27 research outputs found

    Effect of Fish Oil Parenteral Emulsion Supplementation on Inflammatory Parameters after Esophagectomy

    Full text link
    (Background) Esophagectomy (EPG) presents high morbidity and mortality. Omega-3 fatty acids (omega-3FA) are a pharmaconutrient with benefits for postoperative morbidity. Studies of omega-3FA administered parenterally after esophagectomy are scarce. This study proposes to investigate the effect of combining fish oil lipid emulsions (LE) administered parenterally with enteral nutrition support. (Methods) Randomization was 1:1:1 in three groups: Group A received a LE mixture of 0.4 g/kg/day of fish oil and 0.4 g/kg/day of LCT/MCT 50:50, Group B received 0.8 g/kg/day of fish oil LE, and Group C received 0.8 g/kg/day of LCT/MCT 50:50. Variables were measured at recruitment time and day +1, +3, and +5. Inflammatory variables studied were Interlukin-6, C-reactive protein (CRP), tumoral necrosis factor-alpha (TNF-alpha), IL-10, IL-8 and CD25s. Safety, nutritional parameters and complications were analyzed. (Results) Administration of omega-3LE in the immediate postoperative period did not modulate the earlier inflammatory response. Statistically significant differences were found in IL-6 and CRP overall temporal evolution but were not found when studying the type of LE administered or in patients needing critical care. Administration of omega-3 resulted in safe and improved hypertriglyceridemia, depending on the dose. (Conclusions) omega-3FA has no impact on the early inflammatory postoperative response assessed for a short period but was safe. More studies for longer periods are needed

    Multiplex RNA-based detection of clinically relevant MET alterations in advanced non-small cell lung cancer

    Get PDF
    We studied MET alterations in 474 advanced non-small-cell lung cancer (NSCLC) patients by nCounter, an RNA-based technique. We identified 3% with MET Δex14 mRNA and 3.5% with very-high MET mRNA expression, a surrogate of MET amplification. MET alterations identified by nCounter correlated with clinical benefit from MET inhibitors. Quantitative mRNA-based techniques can improve the selection of patients for MET-targeted therapies. MET inhibitors have shown activity in non-small-cell lung cancer patients (NSCLC) with MET amplification and exon 14 skipping (METΔex14). However, patient stratification is imperfect, and thus, response rates have varied widely. Here, we studied MET alterations in 474 advanced NSCLC patients by nCounter, an RNA-based technique, together with next-generation sequencing (NGS), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and reverse transcriptase polymerase chain reaction (RT-PCR), exploring correlation with clinical benefit. Of the 474 samples analyzed, 422 (89%) yielded valid results by nCounter, which identified 13 patients (3%) with MET Δex14 and 15 patients (3.5%) with very-high MET mRNA expression. These two subgroups were mutually exclusive, displayed distinct phenotypes and did not generally coexist with other drivers. For MET Δex14, 3/8 (37.5%) samples positive by nCounter tested negative by NGS. Regarding patients with very-high MET mRNA, 92% had MET amplification by FISH and/or NGS. However, FISH failed to identify three patients (30%) with very-high MET RNA expression, among which one received MET tyrosine kinase inhibitor treatment deriving clinical benefit. Our results indicate that quantitative mRNA-based techniques can improve the selection of patients for MET-targeted therapies

    Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide

    Full text link
    Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing

    Analyse der Benthosgemeinschaften im Weddellmeer (Antarktis): ein Landschaftsökologischer Ansatz

    No full text
    In this study, I introduce the use of methods borrowed from landscape ecology to analyse quantitatively spatial patterns in Antarctic mega-epibenthic communities. This discipline focuses on the notion that communities can be observed as a patch mosaic at any scale. From this perspective I investigated spatial patterns based on landscape indices in an undisturbed benthic assemblage across different stations; and through successional stages after iceberg disturbance. The present study i) characterizes coverage and abundance of sessile benthic fauna, ii) describes faunal heterogeneity using ordination techniques and identifies "structural species" from each successional stage, iii) analyses changes of growth-form patterns through succession, and iv) relates the life-history traits of "structural species" to differences in distribution during the course of Antarctic succession. For this purpose, underwater photographs (1m2 each) corresponding to 6 stations from the southeastern Weddell Sea shelf were investigated. Overall, the different stations within the undisturbed assemblage showed large differences in patch characteristics, diversity, and interspersion. Canonical Correspondence Analysis (CCA) revealed a gradual separation from early to older stages of succession after iceberg disturbance. Conceptually, the results describe a gradient from samples belonging to early stages of recovery with low cover area, low complexity of patch shape, small patch size, low diversity, and patches poorly interspersed to samples from later stages with higher values of these indices. Several "structural species" were identified among the stages, and information on their coverage, abundance, and size is provided. I conclude by comparing the selected "structural species" and relating their life history traits to differences in distribution during the course of Antarctic succession

    Modulation and Protection Effects of Antioxidant Compounds against Oxidant Induced Developmental Toxicity in Zebrafish

    No full text
    The antioxidant effect of compounds is regularly evaluated by in vitro assays that do not have the capability to predict in vivo protective activity or to determine their underlying mechanisms of action. The aim of this study was to develop an experimental system to evaluate the in vivo protective effects of different antioxidant compounds, based on the zebrafish embryo test. Zebrafish embryos were exposed to tert-butyl hydroperoxide (tBOOH), tetrachlorohydroquinone (TCHQ) and lipopolysaccharides from Escherichia coli (LPS), chemicals that are known inducers of oxidative stress in zebrafish. The developmental toxic effects (lethality or dysmorphogenesis) induced by these chemicals were modulated with n-acetyl l-cysteine and Nω-nitro l-arginine methyl ester hydrochloride, dimethyl maleate and dl-buthionine sulfoximine in order to validate the oxidant mechanism of oxidative stress inducers. The oxidant effects of tBOOH, TCHQ, and LPS were confirmed by the determination of significant differences in the comparison between the concentration–response curves of the oxidative stress inducers and of the modulators of antioxidant status. This concept was also applied to the study of the effects of well-known antioxidants, such as vitamin E, quercetin, and lipoic acid. Our results confirm the zebrafish model as an in vivo useful tool to test the protective effects of antioxidant compounds

    The Zebrafish Embryo as a Model to Test Protective Effects of Food Antioxidant Compounds

    No full text
    The antioxidant activity of food compounds is one of the properties generating the most interest, due to its health benefits and correlation with the prevention of chronic disease. This activity is usually measured using in vitro assays, which cannot predict in vivo effects or mechanisms of action. The objective of this study was to evaluate the in vivo protective effects of six phenolic compounds (naringenin, apigenin, rutin, oleuropein, chlorogenic acid, and curcumin) and three carotenoids (lycopene B, β-carotene, and astaxanthin) naturally present in foods using a zebrafish embryo model. The zebrafish embryo was pretreated with each of the nine antioxidant compounds and then exposed to tert-butyl hydroperoxide (tBOOH), a known inducer of oxidative stress in zebrafish. Significant differences were determined by comparing the concentration-response of the tBOOH induced lethality and dysmorphogenesis against the pretreated embryos with the antioxidant compounds. A protective effect of each compound, except β-carotene, against oxidative-stress-induced lethality was found. Furthermore, apigenin, rutin, and curcumin also showed protective effects against dysmorphogenesis. On the other hand, β-carotene exhibited increased lethality and dysmorphogenesis compared to the tBOOH treatment alone

    Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification

    No full text
    International audienceSeagrasses are important primary producers in oceans worldwide. They live in shallow coastal waters that are experiencing carbon dioxide enrichment and ocean acidification. Posidonia oceanica, an endemic seagrass species that dominates the Mediterranean Sea, achieves high abundances in seawater with relatively low concentrations of dissolved inorganic nitrogen. Here we test whether microbial metabolisms associated with P. oceanica and surrounding seawater enhance seagrass access to nitrogen. Using stable isotope enrichments of intact seagrass with amino acids, we show that ammonification by free-living and seagrass-associated microbes produce ammonium that is likely used by seagrass and surrounding particulate organic matter. Metagenomic analysis of the epiphytic biofilm on the blades and rhizomes support the ubiquity of microbial ammonification genes in this system. Further, we leveraged the presence of natural 2 carbon dioxide vents and show that microbial ammonification was reduced at lower pH. The presence of P. oceanica enhanced the uptake of nitrogen by water column particulate organic matter, increasing carbon fixation by a factor of 8.6 to 17.4 with the greatest effect at CO2 vent sites. Seagrass and its microbial associates thus enhanced water column productivity and were a locus for nutrient cycling

    Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification

    No full text
    Seagrasses are important primary producers in oceans worldwide. They live in shallow coastal waters that are experiencing carbon dioxide enrichment and ocean acidification. Posidonia oceanica, an endemic seagrass species that dominates the Mediterranean Sea, achieves high abundances in seawater with relatively low concentrations of dissolved inorganic nitrogen. Here we tested whether microbial metabolisms associated with P. oceanica and surrounding seawater enhance seagrass access to nitrogen. Using stable isotope enrichments of intact seagrass with amino acids, we showed that ammonification by free-living and seagrass-associated microbes produce ammonium that is likely used by seagrass and surrounding particulate organic matter. Metagenomic analysis of the epiphytic biofilm on the blades and rhizomes support the ubiquity of microbial ammonification genes in this system. Further, we leveraged the presence of natural carbon dioxide vents and show that the presence of P. oceanica enhanced the uptake of nitrogen by water column particulate organic matter, increasing carbon fixation by a factor of 8.6–17.4 with the greatest effect at CO2 vent sites. However, microbial ammonification was reduced at lower pH, suggesting that future ocean climate change will compromise this microbial process. Thus, the seagrass holobiont enhances water column productivity, even in the context of ocean acidification
    corecore