616 research outputs found
Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks
International audienceThe difference between gas and water permeabilities is significant not only for solving gas-water two-phase flow problems, but also for quick measurements of permeability using gas as pore fluid. We have measured intrinsic permeability of sedimentary rocks from the Western Foothills of Taiwan, using nitrogen gas and distilled water as pore fluids, during several effective-pressure cycling tests at room temperature. The observed difference in gas and water permeabilities has been analyzed in view of the Klinkenberg effect. This effect is due to slip flow of gas at pore walls which enhances gas flow when pore sizes are very small. Experimental results show (1) that gas permeability is larger than water permeability by several times to one order of magnitude, (2) that gas permeability increases with increasing pore pressure, and (3) that water permeability slightly increases with increasing pore-pressure gradient across the specimen. The results (1) and (2) can be explained by Klinkenberg effect quantitatively with an empirical power law for Klinkenberg constant. Thus water permeability can be estimated from gas permeability. The Klinkenberg effect is important when permeability is lower than 10?18 m2 and at low differential pore pressures, and its correction is essential for estimating water permeability from the measurement of gas permeability. A simple Bingham-flow model of pore water can explain the overall trend of the result (3) above. More sophisticated models with a pore-size distribution and with realistic rheology of water film is needed to account for the observed deviation from Darcy's law
Fitting formulae for evolution tracks of massive stars under extreme metal poor environments for population synthesis calculations and star cluster simulations
We have devised fitting formulae for evolution tracks of massive stars with under extreme metal poor (EMP) environments for , and , where and are the solar mass and metallicity, respectively. Our fitting formulae are based on reference stellar models which we have newly obtained by simulating the time evolutions of EMP stars. Our fitting formulae take into account stars ending with blue supergiant (BSG) stars, and stars skipping Hertzsprung gap (HG) phases and blue loops, which are characteristics of massive EMP stars. In our fitting formulae, stars may remain BSG stars when they finish their core Helium burning (CHeB) phases. Our fitting formulae are in good agreement with our stellar evolution models. We can use these fitting formulae on the SSE, BSE, NBODY4, and NBODY6 codes, which are widely used for population synthesis calculations and star cluster simulations. These fitting formulae should be useful to make theoretical templates of binary black holes formed under EMP environments
Superconducting pi qubit with a ferromagnetic Josephson junction
Solid-state qubits have the potential for the large-scale integration and for
the flexibility of layout for quantum computing. However, their short
decoherence time due to the coupling to the environment remains an important
problem to be overcome. We propose a new superconducting qubit which
incorporates a spin-electronic device: the qubit consists of a superconducting
ring with a ferromagnetic pi junction which has a metallic contact and a normal
Josephson junction with an insulating barrier. Thus, a quantum coherent
two-level state is formed without an external magnetic field. This feature and
the simple structure of the qubit make it possible to reduce its size leading
to a long decoherence time.Comment: 4 pages, 3 figure
A hierarchical research by large-scale and ab initio electronic structure theories -- Si and Ge cleavage and stepped (111)-2x1 surfaces --
The ab initio calculation with the density functional theory and plane-wave
bases is carried out for stepped Si(111)-2x1 surfaces that were predicted in a
cleavage simulation by the large-scale (order-N) electronic structure theory
(T. Hoshi, Y. Iguchi and T. Fujiwara, Phys. Rev. B72 (2005) 075323). The
present ab initio calculation confirms the predicted stepped structure and its
bias-dependent STM image. Moreover, two (meta)stable step-edge structures are
found and compared. The investigation is carried out also for Ge(111)-2x1
surfaces, so as to construct a common understanding among elements. The present
study demonstrates the general importance of the hierarchical research between
large-scale and ab initio electronic structure theories.Comment: 5 pages, 4 figures, to appear in Physica
High Fluid‐Pressure Patches Beneath the Décollement: A Potential Source of Slow Earthquakes in the Nankai Trough off Cape Muroto
南海トラフのスロー地震震源域近傍に高圧の間隙水帯を確認 --スロー地震発生のメカニズム解明へ前進--. 京都大学プレスリリース. 2021-06-17.Pore pressure plays a key role in the generation of earthquakes in subduction zones. However, quantitative constraints for its determination are quite limited. Here, we estimate the subsurface pore pressure by analyzing the transient upwelling flow of drilling mud from borehole C0023A of the International Ocean Discovery Program (IODP) Expedition 370, in the Nankai Trough off Cape Muroto. This upward flow provided the first direct evidence of an overpressured aquifer in the underthrust sediments off Cape Muroto. To estimate the pre-drilling pore pressure in the overpressured aquifer around a depth of 950–1, 050 m below sea floor, we examined the measured porosities of core samples retrieved from nearby IODP wells; we then proceeded to explain the observed time evolution of the flow rate of the upwelling flow by modeling various sized aquifers through solving a radial diffusion equation. It was observed that for a permeability of 10⁻¹³ m², the aquifer possessed an initial excess pore pressure of ∼5–10 MPa above the hydrostatic pressure, with a lateral dimension of several hundred meters and thickness of several tens of meters. The overpressure estimates from the porosity-depth profile at Site C0023 differ from those at other drill sites in the region, suggesting the possible existence of multiple overpressured aquifers with a patchy distribution in the underthrust sediments of the Nankai Trough. As pore pressure is relevant in maintaining fault stability, the overpressured aquifers may be the source of slow earthquakes that have been observed around the drilling site
Saari's homographic conjecture for planar equal-mass three-body problem in Newton gravity
Saari's homographic conjecture in N-body problem under the Newton gravity is
the following; configurational measure \mu=\sqrt{I}U, which is the product of
square root of the moment of inertia I=(\sum m_k)^{-1}\sum m_i m_j r_{ij}^2 and
the potential function U=\sum m_i m_j/r_{ij}, is constant if and only if the
motion is homographic. Where m_k represents mass of body k and r_{ij}
represents distance between bodies i and j. We prove this conjecture for planar
equal-mass three-body problem.
In this work, we use three sets of shape variables. In the first step, we use
\zeta=3q_3/(2(q_2-q_1)) where q_k \in \mathbb{C} represents position of body k.
Using r_1=r_{23}/r_{12} and r_2=r_{31}/r_{12} in intermediate step, we finally
use \mu itself and \rho=I^{3/2}/(r_{12}r_{23}r_{31}). The shape variables \mu
and \rho make our proof simple
Efficacy of lamivudine for preventing hepatocellular carcinoma in chronic hepatitis B: A multicenter retrospective study of 2795 patients
ArticleHEPATOLOGY RESEARCH. 32(3): 173-184 (2005)journal articl
Formation of air-gap structure at a GaN epilayer/substrate interface by using an InN interlayer
We propose a new technique for “air‐gap” formation at a GaN/sapphire interface by using an InN interlayer. This is aimed to grow epitaxial GaN films with reduced stress and cracks. First, an InN interlayer of about 0.2 μm thick is grown at 600 °C in atmospheric pressure. Then a 30 nm‐thick GaN buffer layer is grown on the InN layer at 550 °C. The substrate temperature is ramped up to 1000 °C in the NH3 flow, and finally a 1.5 μm‐thick GaN epilayer is grown on the annealed GaN buffer layer using nitrogen carrier gas. Consequently, an “air‐gap” structure is naturally formed close to the substrate surface. During the ramping period of substrate temperature, the InN layer decomposes due to its thermal instability and metallic In is formed. It is found that metallic In drops as a result of InN decomposition contribute to the air‐gap formation. No cracks are found on the GaN surface and a reduced stress in the layer is confirmed by PL and Raman shift measurements
- …