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Solid-state qubits have the potential for the large-scale integration and for the flexibility of layout for
quantum computing. However, their short decoherence time due to the coupling to the environment
remains an important problem to be overcome. We propose a new superconducting qubit which
incorporates a spin-electronic device: the qubit consists of a superconducting ring with a ferromagnetic
� junction which has a metallic contact and a normal Josephson junction with an insulating barrier. Thus,
a quantum coherent two-level state is formed without an external magnetic field. This feature and the
simple structure of the qubit make it possible to reduce its size leading to a long decoherence time.
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The quantum computer is an innovative device in the
sense that it would make it possible to solve problems
which require unrealistically long computation times on a
classical computer [1]. In the quantum computer, the in-
formation is stored in a basic element called the qubit,
which is a quantum coherent two-level system. The super-
position of the two-level state is utilized in the process of
quantum computing. For the physical realization of the
qubit, various systems have been proposed, e.g., ion traps,
nuclear spins, and photons. Among the proposals, solid-
state devices have the advantage of large-scale integration
and flexibility of layout. On the other hand, a challenging
problem for the solid-state qubits is the reduction of the
decoherence effect, since the solid states qubits in general
have a short decoherence time due to their coupling to the
environment. In recent years, several qubits based on the
Josephson effect have been proposed [2–15]. One of the
proposals involves a Cooper-pair box type of qubit [2,3]. In
this case, quantum oscillations between the quantum two-
level states (Rabi oscillations) have been detected [2], and
the operation of coupled two qubits has been demonstrated
[3]. Another example is a flux qubit which uses the super-
conducting phase. For this proposal, a circuit with a single
and relatively large Josephson junction has been demon-
strated [4]. Mooij et al. have also proposed a flux qubit
which consists of a superconducting loop with three
Josephson junctions [5–12]. In this qubit, degenerate
double minima form in the superconducting phase space
when an external magnetic field, which corresponds to the
half of the unit magnetic flux, is applied. The bonding and
antibonding states which form due to the tunneling be-
tween these two states can be used as the two quantum
coherent states. Experimentally, microwave-induced tran-
sitions between the two quantum states, a coupling be-
tween two qubits, and entangled states, have been observed
for this qubit [5–11]. Another proposal is a qubit which
does not require an external magnetic field and uses an
s-wave=d-wave=s-wave (sds) superconducting junction
[13]. In addition, a five-junction device with one ferromag-
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netic � junction and four normal Josephson junctions has
been discussed in analogy with the sds qubit [14].

Recent advances in microprocessing techniques have
yielded a variety of spin-electronic devices [16]. For in-
stance, in ferromagnet/superconductor (FM/SC) junctions,
novel phenomena due to the competition between ferro-
magnetism and superconductivity are expected [17,18].
There have also been extensive theoretical studies of
Josephson � junctions consisting of a ferromagnet sand-
wiched between two superconductors (SC/FM/SC) [19–
22]. In this respect, several experimental observations of
the � state have been reported [23–26]. At the interface
between an SC and an FM, Cooper pairs penetrating into
the FM have a finite momentum Q / hex=vF, where vF is
the Fermi velocity, because of the exchange splitting hex
between the up and the down spin bands [22]. Conse-
quently, the superconducting order parameter  oscillates
as  / cos�2Qx� along the direction x which is perpen-
dicular to the interface. In SC/FM/SC junctions, the order
parameters in the two SC’s take different signs, when the
thickness of the FM is about half of the period of the
oscillation. This causes the current-phase relation to be
shifted by � from that of a normal Josephson junction.
This is the so-called � junction [19–26].

In this Letter, we study a qubit which consists of a
superconducting ring with an insulator and a ferromagnet
as shown in Fig. 1. In the ring, the superconductor/
insulator/superconductor (SC/I/SC) junction is a normal
Josephson junction with Josephson energy U0 �
�E0 cos. Here, E0 is the coupling constant in the SC/I/
SC junction and  is the phase difference between the SC’s.
On the other hand, the SC/FM/SC junction is a metallic �
junction. In order to realize this qubit, it is required to
fabricate a clean � junction with a nonsinusoidal current-
phase relation. Before starting the discussion on the qubit,
it is useful to first derive the Josephson energy U� of the
metallic � junction by using the Bogoliubov–de Gennes
(BdG) equation [27]. Solving the BdG equation, we obtain
the Andreev bound state energy E� for spin � [28]. The
1-1  2005 The American Physical Society
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FIG. 1 (color online). Schematic diagram of a superconducting
ring with an insulator and a ferromagnet. The superconductor/
insulator/superconductor (SC/I/SC) junction is a 0 junction (a nor-
mal Josephson junction), and the superconductor/ferromagnet/
superconductor (SC/FM/SC) junction is a metallic � junction.
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phase, , dependent part of the free energy in the SC/FM/
SC junction is then expressed in terms of E� as

F � �kBT
X
�

X
E�>0

ln�2 cosh�E�=2kBT��: (1)

As usual, T is the temperature and kB is the Boltzmann
constant. At low temperatures, the free energy [Eq. (1)]
reduces to F � ��1=2����E�>0E�.

Figures 2(a) and 2(b) show the  dependence of the free
energy F and of the Josephson current I � �2e=@��@F=@�
in the SC/FM/SC junction, respectively. Here, results are
presented for two different values of the interfacial barrier
Z � mV=@2kF, where V is the strength of the �-function
type of potential at the interfaces, m is the electron mass,
and kF is the Fermi wave number [28]. The solid and the
dashed curves in Figs. 2(a) and 2(b) correspond to the cases
of Z � 0 and 3, respectively. In obtaining these results, we
have assumed that the exchange field is hex � 0:31�F,
where �F is the Fermi energy, the thickness of the FM is
L � 10=kF, and the coherence length at zero temperature
is �0 � 1000=kF. As shown in Fig. 2(a), F has a minimum
at  � � (� junction), and the variation of F with  is
FIG. 2. (a) Free energy F as a function of , and (b) current-
phase relation in a SC/FM/SC junction for hex � 0:31�F. The
solid and the dashed lines are for the metallic contact (Z � 0)
and the tunnel junction (Z � 3), respectively, and �0 is the
superconducting gap at zero temperature. In these figures, the
left vertical axes are for Z � 0 and the right vertical axes are for
Z � 3. In addition, in (a) the origin of the vertical axes is
arbitrary.
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strongly dependent on Z. In the tunnel junction for Z�3,
we have F � �E� cos�	 ��, where E� is the Josephson
coupling constant. This gives the current with the�-shifted
sinusoidal form which is shown in Fig. 2(b) and described
by I � I� sin�	 �� with I� � 2eE�=@ the critical cur-
rent. On the other hand, in the metallic contact (Z � 0),
we have approximately F � �E�j cos��	 ��=2�j. This
leads to a current with the nonsinusoidal form I �
��I�=2� sin��	 ��=2� for 0 �  � 2�. The solid curve
in Fig. 2(b) shows that there are deviations from this form
when  is near 0 or 2�. However, these deviations do not
affect the following discussion, and the approximate rela-
tions given here are valid for the cases of 0:28�F & hex &

0:34�F and 0:79�F & hex & 0:87�F. In addition, it can
be shown that these relations are valid for more realistic
cases with small but finite Z [29]. Therefore, if we choose
the appropriate values for hex=�F and kFL, this form for
the Josephson energy of the metallic � junction is a good
approximation, and in the following it will be used for the
Josephson energy of the metallic � junction in the super-
conducting ring.

Now, we discuss the superconducting qubit which is
shown in Fig. 1. In the ring, the SC/I/SC (0 junction) and
the SC/FM/SC (� junction) junctions have the Josephson
energies U0 � �E0 cos0 and U� � �E�j cos��� 	
��=2�j, respectively. Here, E0��� is the coupling constant
in the 0 ��� junction. The superconducting phase differ-
ence is 0 for the 0 junction, and � for the � junction. In
this case, the total flux in the ring � satisfies the relation
� � 0 � 2��=�0 � 2�l, where �0 � h=2e is the unit
flux and l is an integer. The total Hamiltonian of the ring
is expressed as H � K 	U0 	U� 	UL, where K �
�4Ec�@2=@20� is the electrostatic energy, Ec � e2=2C is
the Coulomb energy for a single charge, C is the capaci-
tance of the 0 junction, and UL is the magnetic energy
stored in the ring. Here, the electrostatic energy in the �
junction is neglected. The magnetic energy UL is given by
UL � ����ext�

2=2Ls, where Ls is the self-inductance of
the ring and �ext is the external magnetic flux. The total
Hamiltonian H is analogous to that describing the motion
of a particle with kinetic energyK and in a potential Utot �
U0 	U� 	UL. Using the relation between the phase and
the total flux, the potential Utot becomes a function of �
and �: Utot � Utot��;��. In order to obtain the state of
the ring, we seek the solution at which Utot is minimum.
First, we minimize Utot with respect to �, i.e., @Utot=@� �
0, which yields ��0� � $��0=2�� sin0 	�ext, where
$ � 2�I0Ls=�0 and I0 � 2eE0=@ is the critical current in
the 0 junction. Substituting this equation in the expression
for Utot, we obtain

Utot=E0 � � cos0 	
$
2
sin20

� %
��������cos

�
0 	 �

2
	
$
2
sin0 	 �

�ext

�0

���������; (2)

where % � E�=E0.
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Figure 3(a) shows the 0 dependence of the normalized
Utot for various values of % when there is no external
magnetic field (�ext � 0). Here, we have taken Ls �
2:0 pH for the ring with a diameter of 2 �m and I0 �
500 nA, which leads to$ � 3:1� 10�3 [5,8]. As shown in
Fig. 3(a), Utot has double minima located at 0 � �=2 and
3�=2, and the barrier height between the two degenerate
states, j"i (0 � �=2) and j#i (0 � 3�=2), is controlled
by %. The value of % can be adjusted by changing the
thickness and the area of the insulating barrier or of the
ferromagnet. For j "i and j #i states, currents I of magnitude
& I0 flow in the clockwise and counterclockwise direc-
tions, respectively, inducing flux � � LsI � �4:8�
10�4�0. Because of the quantum tunneling between j"i
and j#i, the bonding j0i / j"i 	 j#i and the antibonding
j1i / j"i � j#i states are formed, hence yielding a two-
level quantum system. For an Al2O3 insulator with junc-
tion area 0:1 �m2 and thickness 1 nm, it is formed that
Ec � 1:7� 10�24 J, and E0=Ec � 96. In this case, from
numerical calculations for % � 3, we estimate that the
energy gap �E between the ground state j0i and the first
exited state j1i is �E � 3:3� 10�24 J, which corresponds
to a frequency of �E=h � 5:0 GHz. Microwave absorp-
tion measurements can be used to confirm this two-level
quantum state. Figure 3(b) shows the 0 dependence of the
normalized Utot for % � 3 within external magnetic fields.
This figure shows that the degeneracy of the states j"i and
j#i is lifted by applying a small external magnetic field to
the ring. For �ext � 	���0:01�0, the component of j"i
(j#i) is larger than that of j#i (j"i) in the ground state j0i,
and vice versa in the first excited state j1i. Within the
presence of the larger external magnetic field (�ext �
�0:05�0), the double-well potential disappears and the
ground state is either j"i or j#i. Therefore, finite currents
flow in opposite directions for j0i and j1i states, when there
is a finite external magnetic field. As a result of this, it is
possible to distinguish the j0i and j1i states by measuring
the current flowing in the ring with a superconducting
quantum interference device (SQUID) placed around the
ring. Our qubit has coherent states which require no exter-
FIG. 3. Normalized Utot as a function of 0 for $ � 3:1�
10�3 shown in (a) when there is no external magnetic field
(�ext � 0), and shown in (b) when the field is finite: �ext=�0 �
0:01 (solid line), �0:01 (dashed line), 0.05 (dotted line), and
�0:05 (dot-dashed line).
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nal bias magnetic field; thus only a small external magnetic
field is needed for the manipulation and the detection of the
states, as compared to the half unit flux �0=2 required in
the proposal of Ref. [5]. For instance, even if the dimension
of the qubit is several 100 nm’s, only magnetic fields of the
order of a millitesla are needed for the manipulation of our
qubit. This feature enables us to make qubits with smaller
size which is advantageous in large-scale integration. This
type of qubit is also resistant to external noise and has
longer decoherence time [5]. Here we discuss the dissi-
pation in the metallic � junction. In the small metallic
� junction, the discrete Andreev bound states are formed.
For L� �0, only one Andreev bound state exists. The
Andreev bound state energy is E��0 (gapless) for ��0
and 2�, and therefore all quantum transitions and qubit
operations should avoid these phases at which noise due to
thermally excited quasiparticles will increase [30]. As
discussed above, in the superconducting ring, the quantum
tunneling occurs between 0 � � � �=2 and � 3�=2
(Fig. 3). In this phase region, the Andreev bound state
energy is in the region of 0:75� & E� & �, where � is
the superconducting gap. This indicates that the metallic �
junction is well gapped in the phase region where the
quantum tunneling occurs. Therefore, the quasiparticle
tunneling which can cause the dissipation is strongly sup-
pressed at low temperatures and low voltages. In order to
realize the universal quantum logic gates, a controlled-NOT

gate is needed in addition to the single qubit rotations
discussed above. Using our qubit, the controlled-NOT

gate is realized in the following way: when two qubits A
andB have an inductive coupling, the energy gap in qubit A
depends on the state of qubit B. In other words, the energy
gap for qubit A is �EA0 or �EA1 when qubit B is in state j0i
or j1i, respectively. Now, if a microwave pulse with the
frequency �EA1=h is applied to qubit A, the state of qubit A
can be changed only if qubit B is in state j1i. This is our
proposal for the realization of the controlled-NOT gate.

We also propose a qubit which consists of a supercon-
ducting ring with a metallic superconductor/normal metal/
superconductor (SC/NM/SC) junction and a ferromagnetic
� junction. In the metallic SC/NM/SC junction, the phase
dependence of the free energy is � shifted from that of a
metallic � junction. The double minima are formed in the
ring regardless of the interfacial barrier height in the �
junction, and hence the ring has potential as a qubit.

The qubits which we propose have the following advan-
tages: (i) the geometry is simple; i.e., only two Josephson
junctions are used, (ii) the qubit is constructed without
an external magnetic field, and only a small external mag-
netic field is needed in the measurement of the state.
Furthermore, because of these advantages, (iii) the size
of the qubit can be reduced. This makes large-scale inte-
gration possible, and leads to a reduction of the decoher-
ence due to the coupling to the environment. Spin-
electronic devices have been extensively studied. The qu-
bits offer a new route for spin-electronics to quantum
computing.
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