105 research outputs found

    Weakly Calibrated Stereoscopic Visual Servoing for Laser Steering: Application to Phonomicrosurgery.

    No full text
    International audienceThis paper deals with the study of a weakly calibrated multiview visual servoing control law for microrobotic laser phonomicrosurgery of the vocal folds. It consists of the development of an endoluminal surgery system for laserablation and resection of cancerous tissues. More specifically, this paper focuses on the part concerning the control of the laser spot displacement during surgical interventions. To perform this, a visual control law based on trifocal geometry is designed using two cameras and a laser source (virtual camera). The method is validated on a realistic testbench and the straight point-to-point trajectories are demonstrated

    RoCNet: 3D Robust Registration of Point-Clouds using Deep Learning

    Full text link
    This paper introduces a new method for 3D point cloud registration based on deep learning. The architecture is composed of three distinct blocs: (i) an encoder composed of a convolutional graph-based descriptor that encodes the immediate neighbourhood of each point and an attention mechanism that encodes the variations of the surface normals. Such descriptors are refined by highlighting attention between the points of the same set and then between the points of the two sets. (ii) a matching process that estimates a matrix of correspondences using the Sinkhorn algorithm. (iii) Finally, the rigid transformation between the two point clouds is calculated by RANSAC using the Kc best scores from the correspondence matrix. We conduct experiments on the ModelNet40 dataset, and our proposed architecture shows very promising results, outperforming state-of-the-art methods in most of the simulated configurations, including partial overlap and data augmentation with Gaussian noise.Comment: 8 page

    Robust trajectory tracking and visual servoing schemes for MEMS manipulation.

    No full text
    International audienceThis paper focuses on the automation of manipulation and assembly of microcomponents using visual feedback controls. Trajectory planning and tracking methods are proposed in order to avoid occlusions during microparts manipulation and to increase the success rate of pick-and-place manipulation cycles. The methods proposed are validated using a five degree-of-freedom (DOF) microrobotic cell including a 3 DOF mobile platform, a 2 DOF micromanipulator, a gripping system and a top-view imaging system. Promising results on accuracy and repeatability of microballs manipulation tasks are obtained and presented

    Robotic Micromanipulation and Microassembly using Mono-view and Multi-scale visual servoing.

    No full text
    International audienceThis paper investigates sequential robotic micromanipulation and microassembly in order to build 3-D microsystems and devices. A mono-view and multiple scale 2-D visual control scheme is implemented for that purpose. The imaging system used is a photon video microscope endowed with an active zoom enabling to work at multiple scales. It is modelled by a non-linear projective method where the relation between the focal length and the zoom factor is explicitly established. A distributed robotic system (xy system, z system) with a twofingers gripping system is used in conjunction with the imaging system. The results of experiments demonstrate the relevance of the proposed approaches. The tasks were performed with the following accuracy: 1.4 m for the positioning error, and 0.5 for the orientation error

    Visual Servoing Schemes for Automatic Nanopositioning Under Scanning Electron Microscope.

    No full text
    International audienceThis paper presents two visual servoing approaches for nanopositioning in a scanning electron microscope (SEM). The first approach uses the total pixel intensities of an image as visual measurements for designing the control law. The positioning error and the platform control are directly linked with the intensity variations. The second approach is a frequency domain method that uses Fourier transform to compute the relative motion between images. In this case, the control law is designed to minimize the error i.e. the 2D motion between current and desired images by controlling the positioning platform movement. Both methods are validated at different experimental conditions for a task of positioning silicon microparts using a piezo-positioning platform. The obtained results demonstrate the efficiency and robustness of the developed methods

    A trifocal transfer based virtual microscope for robotic manipulation of MEMS components.

    No full text
    International audienceThe paper deals with the problem of imaging at the microscale. The trifocal transfer based novel view synthesis approach is developed and applied to the images from two photon microscopes mounted in a stereoscopic configuration and observing vertically the work scene. The final result is a lateral virtual microscope working up to 6 frames per second with a resolution up to that of the real microscopes. Visual feedback, accurate measurements and control have been performed with, showing it ability to be used for robotic manipulation of MEMS parts. Keywords: Novel view synthesis, trifocal tensor, photon microscope, microassembly, micromanipulation, MEMS

    A direct visual servoing scheme for automatic nanopositioning.

    Get PDF
    International audienceThis paper demonstrates an accurate nanopositioning scheme based on a direct visual servoing process. This technique uses only the pure image signal (photometric information) to design the visual servoing control law. With respect to traditional visual servoing approaches that use geometric visual features (points, lines ...), the visual features used in the control law is the pixel intensity. The proposed approach has been tested in term of accuracy and robustness in several experimental conditions. The obtained results have demonstrated a good behavior of the control law and very good positioning accuracy. The obtained accuracies are 89 nm, 14 nm, and 0.001 degrees in the x, y and axes of a positioning platform, respectively

    Visual Servoing-Based approach for efficient autofocusing in Scanning Electron Microscope.

    No full text
    International audienceFast and reliable autofocusing methods are essential for performing automatic nano-objects positioning tasks using a scanning electron microscope (SEM). So far in the literature, various autofocusing algorithms have been proposed utilizing a sharpness measure to compute the best focus. Most of them are based on iterative search approaches; applying the sharpness function over the total range of focus to find an image in-focus. In this paper, a new, fast and direct method of autofocusing has been presented based on the idea of traditional visual servoing to control the focus step using an adaptive gain. The visual control law is validated using a normalized variance sharpness function. The obtained experimental results demonstrate the performance of the proposed autofocusing method in terms of accuracy, speed and robustness

    Epipolar geometry for vision-guided laser surgery.

    No full text
    International audienceThe ÎĽRALP project involves the development of a system for endoluminal laser phonosurgery, i.e. surgery of the vocal chords using a laser emitted from inside the larynx. Indeed, in current laryngeal laser surgical procedures, a beam of incision laser is projected on the target position of the soft tissue from the working distance of 400mm by means of a rigid laryngoscope (Fig.1). This yields safety concerns for the patient and staff, as well as limitations to accuracy. More, this so-called laryngeal suspension position of the patient requires an extreme extension of the neck, which makes it painful several days after the operation

    Gluing free assembly of an advanced 3D structure using visual servoing.

    No full text
    International audienceThe paper deals with robotic assembly of 5 parts by their U-grooves to achieve stables 3D MEMS, without any use of soldering effect. The parts and their grooves measure 400 m 400 m 100 m 1.5 m and 100 m 100 m 100 m 1.5 m leading to an assembly clearance ranging from -3 and +3 m. Two visual servo approaches are used simultaneously: 2D visual servo for gripping and release of parts and 3D visual servo for displacement of parts. The results of experiments are presented and analyzed
    • …
    corecore