31 research outputs found

    Search for sterile neutrino mixing in the MINOS long-baseline experiment

    Get PDF
    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L

    Recoilless Resonant Absorption of Monochromatic Neutrino Beam for Measuring Delta m^2_{31} and theta_{13}

    Full text link
    We discuss, in the context of precision measurement of Delta m^2_{31} and theta_{13}, physics capabilities enabled by the recoilless resonant absorption of monochromatic antineutrino beam enhanced by the M\"ossbauer effect recently proposed by Raghavan. Under the assumption of small relative systematic error of a few tenth of percent level between measurement at different detector locations, we give analytical and numerical estimates of the sensitivities to Delta m^2_{31} and sin^2 2theta_{13}. The accuracies of determination of them are enormous; The fractional uncertainty in Delta m^2_{31} achievable by 10 point measurement is 0.6% (2.4%) for sin^2 2theta_{13} = 0.05, and the uncertainty of sin^2 2theta_{13} is 0.002 (0.008) both at 1 sigma CL with the optimistic (pessimistic) assumption of systematic error of 0.2% (1%). The former opens a new possibility of determining the neutrino mass hierarchy by comparing the measured value of Delta m^2_{31} with the one by accelerator experiments, while the latter will help resolving the theta_{23} octant degeneracy.Comment: 23 pages, 3 figures, version to appear in New Journal of Physic

    Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS

    Get PDF
    We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and 735 km in a νμ-dominated beam with a peak energy of 3 GeV. The data, from an exposure of 10.56 × 10^20 protons on target, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters θ24 and Δm41^2 and set limits on parameters of the four-dimensional Pontecorvo-Maki- Nakagawa-Sakata matrix, |Uμ4|2 and |Uτ4|2, under the assumption that mixing between νe and νs is negligible (|Ue4|^2 = 0). No evidence for νμ → νs transitions is found and we set a world-leading limit on θ24 for values of Δm41^2 ≲ 1 eV^2

    Precision constraints for three-flavor neutrino oscillations from the full MINOS+ and MINOS dataset

    Get PDF
    We report the final measurement of the neutrino oscillation parameters Δm322 and sin2θ23 using all data from the MINOS and MINOS+ experiments. These data were collected using a total exposure of 23.76×1020 protons on target producing ν and ν beams and 60.75 kt yr exposure to atmospheric neutrinos. The measurement of the disappearance of ν and the appearance of νe events between the Near and Far detectors yields |Δm322|=2.40-0.09+0.08(2.45-0.08+0.07)×10-3 eV2 and sin2θ23=0.43-0.04+0.20(0.42-0.03+0.07) at 68% C.L. for normal (inverted) hierarchy

    Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS

    Get PDF
    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25 x 10(20) protons on target. A fit to neutrino oscillations yields values of vertical bar Delta m(2)vertical bar = (2.32(-0.08)(+0.12) x 10(-3) eV(2) for the atmospheric mass splitting and sin(2)(2 theta) > 0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively

    Характеристики уровней акмеологической позиции педагога

    Get PDF
    We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the Standard-Model Extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found using the MINOS near detector

    Search for flavor-changing non-standard neutrino interactions by MINOS

    Get PDF
    We report new constraints on flavor-changing non-standard neutrino interactions from the MINOS experiment, in which neutrino versus antineutrino interactions can be distinguished on an event-by-event basis. We analyzed a combined set of beam neutrino and antineutrino data from the well-understood NuMI beam, and found no evidence for deviations from standard neutrino mixing. The observed energy spectra constrain the non-standard neutrino interactions parameter to the range -0.20<εμτ<0.07 (90%C.L.)

    Observation of muon intensity variations by season with the MINOS near detector

    No full text
    A sample of 1.53×109 cosmic-ray-induced single muon events has been recorded at 225 m water equivalent using the MINOS near detector. The underground muon rate is observed to be highly correlated with the effective atmospheric temperature. The coefficient αT, relating the change in the muon rate to the change in the vertical effective temperature, is determined to be 0.428±0.003(stat.)±0.059(syst.). An alternative description is provided by the weighted effective temperature, introduced to account for the differences in the temperature profile and muon flux as a function of zenith angle. Using the latter estimation of temperature, the coefficient is determined to be 0.352±0.003(stat.)±0.046(syst.). © 2014 American Physical Society

    Measurements of atmospheric neutrinos and antineutrinos in the MINOS far detector

    Get PDF
    This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained-vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current ν μ and ν ̄μ interactions, and 701 contained-vertex showers, composed mainly of charged-current ν e and ν ̄e interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of ν μ and ν ̄μ events. The observed ratio of ν ̄μ to ν μ events is compared with the MonteCarlo (MC) simulation, giving a double ratio of Rν̄/νdata/ Rν̄/νMC=1.03±0.08(stat)±0.08(syst). The ν μ and ν ̄μ data are separated into bins of L/E resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed L/E distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of |Δm2|=(1.9±0.4)×10 -3eV2 and sin22θ>0.86. The fit is extended to incorporate separate ν μ and ν ̄μ oscillation parameters, returning 90% confidence limits of |Δm2|-|Δm ̄2|=0.6- 0.8+2.4×10 -3eV2 on the difference between the squared-mass splittings for neutrinos and antineutrinos. © 2012 American Physical Society

    Search for sterile neutrinos mixing with muon neutrinos in MINOS

    No full text
    We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and 735 km in a ν_{μ}-dominated beam with a peak energy of 3 GeV. The data, from an exposure of 10.56×10^{20} protons on target, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters θ_{24} and Δm_{41}^{2} and set limits on parameters of the four-dimensional Pontecorvo-Maki-Nakagawa-Sakata matrix, |U_{μ4}|^{2} and |U_{τ4}|^{2}, under the assumption that mixing between ν_{e} and ν_{s} is negligible (|U_{e4}|^{2}=0). No evidence for ν_{μ}→ν_{s} transitions is found and we set a world-leading limit on θ_{24} for values of Δm_{41}^{2}≲1  eV^{2}
    corecore