362 research outputs found

    Accumulation and depletion layer thicknesses in organic field effect transistors

    Full text link
    We present a simple but powerful method to determine the thicknesses of the accumulation and depletion layers and the distribution curve of injected carriers in organic field effect transistors. The conductivity of organic semiconductors in thin film transistors was measured in-situ and continuously with a bottom contact configuration, as a function of film thickness at various gate voltages. Using this method, the thicknesses of the accumulation and depletion layers of pentacene were determined to be 0.9 nm (VG=-15 V) and 5 nm (VG=15 V).Comment: 3 pages, 4 figures, Jap. J. Appl. Phys. in pres

    Electric field induced charge injection or exhaustion in organic thin film transistor

    Get PDF
    The conductivity of organic semiconductors is measured {\it in-situ} and continuously with a bottom contact configuration, as a function of film thickness at various gate voltages. The depletion layer thickness can be directly determined as a shift of the threshold thickness at which electric current began to flow. The {\it in-situ} and continuous measurement can also determine qualitatively the accumulation layer thickness together with the distribution function of injected carriers. The accumulation layer thickness is a few mono layers, and it does not depend on gate voltages, rather depends on the chemical species.Comment: 4 figures, to be published in Phys. Rev.

    Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Get PDF
    BACKGROUND: Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. RESULTS: We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF) cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h), P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h) the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp) suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. CONCLUSION: The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3

    The Early Effect Onset of SSRI to the Non-Organic-Pain in the Mouth and Face Area

    Get PDF
    These contents obtain the approval of Japanese Red Cross Takayama Hospital Ethics Committeeand it is considering sufficiently about the ethical models such as the protection of the privacy.There is not a state of the conflict of interests (COI )

    Lifetime reduction of a quantum emitter with quasiperiodic metamaterials

    Get PDF
    Enhancement of light-matter interaction of a quantum emitter with subwavelength quasiperiodic metamaterials is proposed and demonstrated. The quasiperiodic metamaterials consist of subwavelength metal-dielectric multilayers, which are arranged into a Fibonacci lattice. The influence of Fibonacci metamaterials (FM) on the dipole emission is analyzed with a semiclassical model. The local density of states near FM is evaluated and a characteristic mode in higher wave numbers is revealed; a strong enhancement of the decay rate was predicted. A lifetime measurement is carried out and a reduction of lifetime of quantum dots on the surface of FM is observed. The enhancement of light-matter interaction arises from the localized latticelike state inherent for self-similar quasiperiodic order
    corecore