1,921 research outputs found

    A novel modified-indirect ELISA based on spherical body protein 4 for detecting antibody during acute and long-term infections with diverse Babesia bovis strains

    Get PDF
    Cattle sera positive by the RAP-1-based cELISA but negative by the SBP4-based MI-ELISA and IFA had negative results by Western blot analysis, suggesting possible false positive results in the cELISA. A. Molecular weight marker (48 to 180 Kd), B. K42-#21, C. W31-#Y-3, D. W31-#Y-11, E. W31-#0-3, F. W31-#Y-9, G. W31-#0-9, H. W31-#Y-10, I. W31-#Y-15, J. P21-#224, K. positive control serum with a band at 75kd representing B. bovis RAP-1 protein, J. negative control serum. Figure S2. Technical difference between the modified indirect ELISA and conventional indirect ELISA using rGST-SBP4 was illustrated in this figure. (DOCX 645 kb

    PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex

    Get PDF
    PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signalling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42-dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN-deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42

    Mechanism of Crosstalk between the LSD1 Demethylase and HDAC1 Deacetylase in the CoREST Complex.

    Get PDF
    The transcriptional corepressor complex CoREST is one of seven histone deacetylase complexes that regulate the genome through controlling chromatin acetylation. The CoREST complex is unique in containing both histone demethylase and deacetylase enzymes, LSD1 and HDAC1, held together by the RCOR1 scaffold protein. To date, it has been assumed that the enzymes function independently within the complex. Now, we report the assembly of the ternary complex. Using both structural and functional studies, we show that the activity of the two enzymes is closely coupled and that the complex can exist in at least two distinct states with different kinetics. Electron microscopy of the complex reveals a bi-lobed structure with LSD1 and HDAC1 enzymes at opposite ends of the complex. The structure of CoREST in complex with a nucleosome reveals a mode of chromatin engagement that contrasts with previous models

    Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice

    Get PDF
    Atherosclerosis and obesity share pathological features including inflammation mediated by innate and adaptive immune cells. LXRα plays a central role in the transcription of inflammatory and metabolic genes. LXRα is modulated by phosphorylation at serine 196 (LXRα pS196), however, the consequences of LXRα pS196 in hematopoietic cell precursors in atherosclerosis and obesity have not been investigated. To assess the importance of LXRα phosphorylation, bone marrow from LXRα WT and S196A mice was transplanted into Ldlr-/- mice, which were fed a western diet prior to evaluation of atherosclerosis and obesity. Plaques from S196A mice showed reduced inflammatory monocyte recruitment, lipid accumulation, and macrophage proliferation. Expression profiling of CD68+ and T cells from S196A mouse plaques revealed downregulation of pro-inflammatory genes and in the case of CD68+ upregulation of mitochondrial genes characteristic of anti-inflammatory macrophages. Furthermore, S196A mice had lower body weight and less visceral adipose tissue; this was associated with transcriptional reprograming of the adipose tissue macrophages and T cells, and resolution of inflammation resulting in less fat accumulation within adipocytes. Thus, reducing LXRα pS196 in hematopoietic cells attenuates atherosclerosis and obesity by reprogramming the transcriptional activity of LXRα in macrophages and T cells to promote an anti-inflammatory phenotype

    On-chip Single Nanoparticle Detection and Sizing by Mode Splitting in an Ultra-high-Q Microresonator

    Full text link
    The ability to detect and size individual nanoparticles with high resolution is crucial to understanding behaviours of single particles and effectively using their strong size-dependent properties to develop innovative products. We report real-time, in-situ detection and sizing of single nanoparticles, down to 30 nm in radius, using mode-splitting in a monolithic ultra-high-Q whispering-gallery-mode (WGM) microtoroid resonator. Particle binding splits a WGM into two spectrally shifted resonance modes, forming a self-referenced detection scheme. This technique provides superior noise suppression and enables extracting accurate size information in a single-shot measurement. Our method requires neither labelling of the particles nor apriori information on their presence in the medium, providing an effective platform to study nanoparticles at single particle resolution.Comment: 23 pages, 8 figure

    Big data and data repurposing – using existing data to answer new questions in vascular dementia research

    Get PDF
    Introduction: Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD. Methods: We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group’s experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015). Results: We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach. Conclusions: There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use

    Infective endocarditis caused by methicillin-resistant Staphylococcus aureus in a young woman after ear piercing: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Ear piercing is a common practice among Korean adolescents and young women and usually is performed by nonmedical personnel, sometimes under suboptimal hygienic conditions. Consequently, ear piercing has been associated with various infectious complications, including fatal infective endocarditis. We report a case of infective endocarditis that was caused by community-associated methicillin-resistant <it>Staphylococcus aureus </it>after ear piercing and that was accompanied by a noticeable facial rash.</p> <p>Case presentation</p> <p>A 29-year-old Korean woman underwent ear piercing six days before hospitalization. On admission, she had fever, erythematous maculopapular rashes on her face, signs of generalized emboli, vegetation in her mitral valve, and methicillin-resistant <it>S. aureus </it>bacteremia. On the basis of the blood culture results, she was treated with vancomycin in combination with gentamicin. On day six of hospitalization, a rupture of the papillary muscle of her mitral valve developed, and emergency cardiac surgery replacing her mitral valve with a prosthetic valve was performed. After eight weeks of antibiotic therapy, she was treated successfully and discharged without significant sequelae.</p> <p>Conclusions</p> <p>Numerable cases of body piercing-related infective endocarditis have been reported, and since ear piercing is commonplace nowadays, the importance of risk recognition cannot be overemphasized. In our report, a patient developed infective endocarditis that was caused by methicillin-resistant <it>S. aureus </it>after ear piercing and that was accompanied by an interesting feature, namely facial rash.</p

    Regulation of pro-inflammatory and pro-fibrotic factors by CCN2/CTGF in H9c2 cardiomyocytes

    Get PDF
    Connective tissue growth factor (CTGF), also known as CCN2, is implicated in fibrosis through both extracellular matrix (ECM) induction and inhibition of ECM degradation. The role of CTGF in inflammation in cardiomyocytes is unknown. In some mesenchymal cell systems, CTGF mediates effects through TGF-β or tyrosine kinase cell surface receptor, TrkA, signalling. In this study, cellular mechanisms by which CTGF regulates pathways involved in fibrosis and inflammation were explored. Murine H9c2 cardiomyocytes were treated with recombinant human (rh)CTGF and ECM formation gene expression: fibronectin, collagen type -I and -III and ECM degradation genes: TIMP-1, TIMP-2 and PAI-1 were found to be induced. CTGF treatment also increased pro-inflammatory cytokines TNF-α, IL-6, MCP-1 and IL-8. CTGF upregulated TGF-β1 mRNA and rapidly induced phosphorylation of TrkA. The CTGF-induced pro-fibrotic and pro-inflammatory effects were blocked by anti-TGF-β neutralizing antibody and Alk 5 inhibitor (SB431542). A specific blocker of TrkA activation, k252a, also abrogated CTGF-induced effects on fibrosis and gene expresison of MCP-1 and IL-8, but not TNF-α or IL-6. Collectively, this data implicates CTGF in effects on pro-fibrotic genes and pro-inflammatory genes via TGF-β pathway signalling and partly through TrkA
    • …
    corecore