620 research outputs found
Assesment Centers In Human Resource Management
Contents :
Assessment centers and human resources management decisions
Casestudies of assessment centers in operation
Basic requirements of an assessment center
Dimensions to be assessed
Situatinal exercises
Observing and classifying behavior
Group discussion of assessment information
Providing feedback of assessment
Evaluating the accuracy of assessment center result
The future of assessment center
Behavioral Assessment of Expert Talent Competencies: Analysis, Decision Making, and Written and Verbal Communication Skills
Organizations face challenges of screening applicants for critical skills to serve in expert staff positions requiring interactions with line managers. Such positions require a special set of cognitive and interpersonal competencies. This study investigates the psychometric qualities of a new behavioral assessment method in use in an applied setting. Using data from a group of 219 finalists for positions in a large Iranian steel company, it examined the validity and fairness of the method in relation to other test and demographic information. Results showed evidence of convergent and discriminant validity and no discrimination against women or older candidates. The study contributes to a clearer understanding of expert competencies and a practical method for assessing and training such competencies. Next steps and future needs are identified
Ensemble coding of crowd speed using biological motion
The accurate perception of human crowds is integral to social understanding and interaction. Previous studies have shown that observers are sensitive to several crowd characteristics such as average facial expression, gender, identity, joint attention, and heading direction. In two experiments, we examined ensemble perception of crowd speed using standard point-light walkers (PLW). Participants were asked to estimate the average speed of a crowd consisting of 12 figures moving at different speeds. In Experiment 1, trials of intact PLWs alternated with trials of scrambled PLWs with a viewing duration of 3 seconds. We found that ensemble processing of crowd speed could rely on local motion alone, although a globally intact configuration enhanced performance. In Experiment 2, observers estimated the average speed of intact-PLW crowds that were displayed at reduced viewing durations across five blocks of trials (between 2500 ms and 500 ms). Estimation of fast crowds was precise and accurate regardless of viewing duration, and we estimated that three to four walkers could still be integrated at 500 ms. For slow crowds, we found a systematic deterioration in performance as viewing time reduced, and performance at 500 ms could not be distinguished from a single-walker response strategy. Overall, our results suggest that rapid and accurate ensemble perception of crowd speed is possible, although sensitive to the precise speed range examined
A metal-organic framework with ultrahigh glass-forming ability
Glass-forming ability (GFA) is the ability of a liquid to avoid crystallization during cooling. Metal-organic frameworks (MOFs) are a new class of glass formers (1?3), with hitherto unknown dynamic and thermodynamic properties. We report the discovery of a new series of tetrahedral glass systems, zeolitic imidazolate framework?62 (ZIF-62) [Zn(Im2?xbImx)], which have ultrahigh GFA, superior to any other known glass formers. This ultrahigh GFA is evidenced by a high viscosity ? (105 Pa?s) at the melting temperature Tm, a large crystal-glass network density deficit (??/?g)network, no crystallization in supercooled region on laboratory time scales, a low fragility (m = 23), an extremely high Poisson?s ratio (? = 0.45), and the highest Tg/Tm ratio (0.84) ever reported. Tm and Tg both increase with benzimidazolate (bIm) content but retain the same ultrahigh Tg/Tm ratio, owing to high steric hindrance and frustrated network dynamics and also to the unusually low enthalpy and entropy typical of the soft and flexible nature of MOFs. On the basis of these versatile properties, we explain the exceptional GFA of the ZIF-62 systempublishersversionPeer reviewe
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
MADNESS (multiresolution adaptive numerical environment for scientific
simulation) is a high-level software environment for solving integral and
differential equations in many dimensions that uses adaptive and fast harmonic
analysis methods with guaranteed precision based on multiresolution analysis
and separated representations. Underpinning the numerical capabilities is a
powerful petascale parallel programming environment that aims to increase both
programmer productivity and code scalability. This paper describes the features
and capabilities of MADNESS and briefly discusses some current applications in
chemistry and several areas of physics
- …