345 research outputs found

    Statistics of natural scene structures and scene categorization

    Get PDF

    Probabilistic Computation in Human Perception under Variability in Encoding Precision

    Get PDF
    A key function of the brain is to interpret noisy sensory information. To do so optimally, observers must, in many tasks, take into account knowledge of the precision with which stimuli are encoded. In an orientation change detection task, we find that encoding precision does not only depend on an experimentally controlled reliability parameter (shape), but also exhibits additional variability. In spite of variability in precision, human subjects seem to take into account precision near-optimally on a trial-to-trial and item-to-item basis. Our results offer a new conceptualization of the encoding of sensory information and highlight the brain’s remarkable ability to incorporate knowledge of uncertainty during complex perceptual decision-making

    The speed of parietal theta frequency drives visuospatial working memory capacity

    Get PDF
    The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta–gamma phase coupling theory of WM capacity

    Sleep-effects on implicit and explicit memory in repeated visual search

    Get PDF
    In repeated visual search tasks, facilitation of reaction times (RTs) due to repetition of the spatial arrangement of items occurs independently of RT facilitation due to improvements in general task performance. Whereas the latter represents typical procedural learning, the former is a kind of implicit memory that depends on the medial temporal lobe (MTL) memory system and is impaired in patients with amnesia. A third type of memory that develops during visual search is the observers’ explicit knowledge of repeated displays. Here, we used a visual search task to investigate whether procedural memory, implicit contextual cueing, and explicit knowledge of repeated configurations, which all arise independently from the same set of stimuli, are influenced by sleep. Observers participated in two experimental sessions, separated by either a nap or a controlled rest period. In each of the two sessions, they performed a visual search task in combination with an explicit recognition task. We found that (1) across sessions, MTL-independent procedural learning was more pronounced for the nap than rest group. This confirms earlier findings, albeit from different motor and perceptual tasks, showing that procedural memory can benefit from sleep. (2) Likewise, the sleep group compared with the rest group showed enhanced context-dependent configural learning in the second session. This is a novel finding, indicating that the MTL-dependent, implicit memory underlying contextual cueing is also sleep-dependent. (3) By contrast, sleep and wake groups displayed equivalent improvements in explicit recognition memory in the second session. Overall, the current study shows that sleep affects MTL-dependent as well as MTL-independent memory, but it affects different, albeit simultaneously acquired, forms of MTL-dependent memory differentially

    A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes

    Get PDF
    Humans can categorize objects in complex natural scenes within 100–150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model) feature space and often categorize objects in natural scenes by categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear how humans achieve rapid scene categorization

    Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory

    Get PDF
    Background: The limited capacity of visual working memory (VWM) requires us to select the task relevant information and filter out the irrelevant information efficiently. Previous studies showed that the individual differences in VWM capacity dramatically influenced the way we filtered out the distracters displayed in distinct spatial-locations: low-capacity individuals were poorer at filtering them out than the high-capacity ones. However, when the target and distracting information pertain to the same object (i.e., multiple-featured object), whether the VWM capacity modulates the featurebased filtering remains unknown. Methodology/Principal Findings: We explored this issue mainly based on one of our recent studies, in which we asked the participants to remember three colors of colored-shapes or colored-landolt-Cs while using two types of task irrelevant information. We found that the irrelevant high-discriminable information could not be filtered out during the extraction of VWM but the irrelevant fine-grained information could be. We added 8 extra participants to the original 16 participants and then split the overall 24 participants into low- and high-VWM capacity groups. We found that regardless of the VWM capacity, the irrelevant high-discriminable information was selected into VWM, whereas the irrelevant fine-grained information was filtered out. The latter finding was further corroborated in a second experiment in which the participants were required to remember one colored-landolt-C and a more strict control was exerted over the VWM capacity

    Conceptual and Visual Features Contribute to Visual Memory for Natural Images

    Get PDF
    We examined the role of conceptual and visual similarity in a memory task for natural images. The important novelty of our approach was that visual similarity was determined using an algorithm [1] instead of being judged subjectively. This similarity index takes colours and spatial frequencies into account. For each target, four distractors were selected that were (1) conceptually and visually similar, (2) only conceptually similar, (3) only visually similar, or (4) neither conceptually nor visually similar to the target image. Participants viewed 219 images with the instruction to memorize them. Memory for a subset of these images was tested subsequently. In Experiment 1, participants performed a two-alternative forced choice recognition task and in Experiment 2, a yes/no-recognition task. In Experiment 3, testing occurred after a delay of one week. We analyzed the distribution of errors depending on distractor type. Performance was lowest when the distractor image was conceptually and visually similar to the target image, indicating that both factors matter in such a memory task. After delayed testing, these differences disappeared. Overall performance was high, indicating a large-capacity, detailed visual long-term memory

    Variation in Tropical Reef Symbiont Metagenomes Defined by Secondary Metabolism

    Get PDF
    The complex evolution of secondary metabolism is important in biology, drug development, and synthetic biology. To examine this problem at a fine scale, we compared the genomes and chemistry of 24 strains of uncultivated cyanobacteria, Prochloron didemni, that live symbiotically with tropical ascidians and that produce natural products isolated from the animals. Although several animal species were obtained along a >5500 km transect of the Pacific Ocean, P. didemni strains are >97% identical across much of their genomes, with only a few exceptions concentrated in secondary metabolism. Secondary metabolic gene clusters were sporadically present or absent in identical genomic locations with no consistent pattern of co-occurrence. Discrete mutations were observed, leading to new chemicals that we isolated from animals. Functional cassettes encoding diverse chemicals are exchanged among a single population of symbiotic P. didemni that spans the tropical Pacific, providing the host animals with a varying arsenal of secondary metabolites

    The relative contribution of shape and colour to object memory

    Get PDF
    The current studies examined the relative contribution of shape and colour in object representations in memory. A great deal of evidence points to the significance of shape in object recognition, with the role of colour being instrumental under certain circumstances. A key but yet unanswered question concerns the contribution of colour relative to shape in mediating retrieval of object representations from memory. Two experiments (N=80) used a new method to probe episodic memory for objects and revealed the relative contribution of colour and shape in recognition memory. Participants viewed pictures of objects from different categories, presented one at a time. During a practice phase, participants performed yes/no recognition with some of the studied objects and their distractors. Unpractised objects shared shape only (Rp–Shape), colour only (Rp–Colour), shape and colour (Rp–Both), or neither shape nor colour (Rp–Neither), with the practised objects. Interference effects in memory between practised and unpractised items were revealed in the forgetting of related unpractised items – retrieval-induced forgetting. Retrieval-induced forgetting was consistently significant for Rp–Shape and Rp–Colour objects. These findings provide converging evidence that colour is an automatically encoded object property, and present new evidence that both shape and colour act simultaneously and effectively to drive retrieval of objects from long-term memory
    • …
    corecore