506 research outputs found

    Direct inference and control of genetic population structure from RNA sequencing data

    Get PDF
    RNAseq data can be used to infer genetic variants, yet its use for estimating genetic population structure remains underexplored. Here, we construct a freely available computational tool (RGStraP) to estimate RNAseq-based genetic principal components (RG-PCs) and assess whether RG-PCs can be used to control for population structure in gene expression analyses. Using whole blood samples from understudied Nepalese populations and the Geuvadis study, we show that RG-PCs had comparable results to paired array-based genotypes, with high genotype concordance and high correlations of genetic principal components, capturing subpopulations within the dataset. In differential gene expression analysis, we found that inclusion of RG-PCs as covariates reduced test statistic inflation. Our paper demonstrates that genetic population structure can be directly inferred and controlled for using RNAseq data, thus facilitating improved retrospective and future analyses of transcriptomic data

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Including Smart Architecture in environments for people with dementia

    Get PDF
    Environments which aim to promote human well-being must address both functional and psychosocial needs. This paper comprises a description of a framework for a smart home environment, which aims to comprehensively address issues of environmental fit, in particular for a person with cognitive impairment associated with dementia, by means of introducing sensing of user affect as a factor in system management of a smart personal life space, and in generation of environmental response, adapting to changing user need. The introduction of affective computing into an intelligent system managing environmental response and adaptation is seen as a critical component in successfully realizing an interactive personal life-space, where a continuous feedback loop operates between user and environment, in real time. The overall intention is to maximize environmental congruence for the user, both functionally and psychosocially, by factoring in adjustment to changing user status. Design thinking, at all scales, is perceived as being essential to achieving a coherent smart environment, where architecture is reframed as interaction design

    Composition Influences the Pathway but not the Outcome of the Metabolic Response of Bacterioplankton to Resource Shifts

    Get PDF
    Bacterioplankton community metabolism is central to the functioning of aquatic ecosystems, and strongly reactive to changes in the environment, yet the processes underlying this response remain unclear. Here we explore the role that community composition plays in shaping the bacterial metabolic response to resource gradients that occur along aquatic ecotones in a complex watershed in Québec. Our results show that the response is mediated by complex shifts in community structure, and structural equation analysis confirmed two main pathways, one involving adjustments in the level of activity of existing phylotypes, and the other the replacement of the dominant phylotypes. These contrasting response pathways were not determined by the type or the intensity of the gradients involved, as we had hypothesized, but rather it would appear that some compositional configurations may be intrinsically more plastic than others. Our results suggest that community composition determines this overall level of community plasticity, but that composition itself may be driven by factors independent of the environmental gradients themselves, such that the response of bacterial communities to a given type of gradient may alternate between the adjustment and replacement pathways. We conclude that community composition influences the pathways of response in these bacterial communities, but not the metabolic outcome itself, which is driven by the environment, and which can be attained through multiple alternative configurations

    Active learning and optimal climate policy

    Get PDF
    This paper develops a climate-economy model with uncertainty, irreversibility, and active learning. Whereas previous papers assume learning from one observation per period, or experiment with control variables to gain additional information, this paper considers active learning from investment in monitoring, specifically in improved observations of the global mean temperature. We find that the decision maker invests a significant amount of money in climate research, far more than the current level, in order to increase the rate of learning about climate change. This helps the decision maker make improved decisions. The level of uncertainty decreases more rapidly in the active learning model than in the passive learning model with only temperature observations. As the uncertainty about climate change is smaller, active learning reduces the optimal carbon tax. The greater the risk, the larger is the effect of learning. The method proposed here is applicable to any dynamic control problem where the quality of monitoring is a choice variable, for instance, the precision at which we observe GDP, unemployment, or the quality of education
    • …
    corecore