58 research outputs found

    Simple Coded Amplify-and-Forward Two-Way Relay Systems with Imperfect Side Information

    Get PDF
    This paper proposes a very simple, near capacity achieving coding scheme for an amplify-and-forward two-way relaying system with imperfect side information, in which two sources communicate with their respective destinations with the help of one relay. To avoid heavy computational complexity at the destinations, we assume a very short memory convolutional code. At the destinations iterative decoding between Joint-over- Antennas (JA) demapper and channel decoder is used to separate and decode the two signals. We present extrinsic information transfer (EXIT) chart analysis of the system. It is shown that demapper and decoder EXIT curves intersect each other before (1, 1) mutual information (MI) point, causing an error floor in the bit-error-rate (BER) performance. With a rate-1 doped accumulator (D-Acc) following the short memory convolutional encoder via an interleaver, the demapper curve and the decoder curve match very well, and the convergence tunnel opens until the (1,1) MI point, and thus the error floor can be completely removed. Simulations were conducted in two cases: without side information, and with imperfect side information. Simulation results show that in case of no side information turbo cliff happens at 1.25 dB away from the Shannon limit of a single link. With the help of side information, cliff happens at a value of received signal-to-noise power ratio even closer to the limit

    Variants at the ASIP locus contribute to coat color darkening in Nellore cattle

    Get PDF
    Background: Nellore cattle (Bos indicus) are well-known for their adaptation to warm and humid environments. Hair length and coat color may impact heat tolerance. The Nellore breed has been strongly selected for white coat, but bulls generally exhibit darker hair ranging from light grey to black on the head, neck, hump, and knees. Given the potential contribution of coat color variation to the adaptation of cattle populations to tropical and sub-tropical environments, our aim was to map positional and functional candidate genetic variants associated with darkness of hair coat (DHC) in Nellore bulls. Results: We performed a genome-wide association study (GWAS) for DHC using data from 432 Nellore bulls that were genotyped for more than 777 k single nucleotide polymorphism (SNP) markers. A single major association signal was detected in the vicinity of the agouti signaling protein gene (ASIP). The analysis of whole-genome sequence (WGS) data from 21 bulls revealed functional variants that are associated with DHC, including a structural rearrangement involving ASIP (ASIP-SV1). We further characterized this structural variant using Oxford Nanopore sequencing data from 13 Australian Brahman heifers, which share ancestry with Nellore cattle; we found that this variant originates from a 1155-bp deletion followed by an insertion of a transposable element of more than 150 bp that may impact the recruitment of ASIP non-coding exons. Conclusions: Our results indicate that the variant ASIP sequence causes darker coat pigmentation on specific parts of the body, most likely through a decreased expression of ASIP and consequently an increased production of eumelanin

    Ultrasonic intensification as a tool for enhanced microbial biofuel yields

    Get PDF
    peer-reviewedUltrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas of downstream processing. Ultrasonic intensification (periodic ultrasonic treatment during the fermentation process) can result in a more effective homogenization of biomass and faster energy and mass transfer to biomass over short time periods which can result in enhanced microbial growth. Ultrasonic intensification can allow the rapid selective extraction of specific biomass components and can enhance product yields which can be of economic benefit. This review focuses on the role of ultrasonication in the extraction and yield enhancement of compounds from various microbial sources, specifically algal and cyanobacterial biomass with a focus on the production of biofuels. The operating principles associated with the process of ultrasonication and the influence of various operating conditions including ultrasonic frequency, power intensity, ultrasonic duration, reactor designs and kinetics applied for ultrasonic intensification are also described

    Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes

    Full text link

    Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s}=13 TeV

    Get PDF
    This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 \hbox {fb}^{-1} of pp collision data at \sqrt{s}=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z\rightarrow \mu \mu and J/\psi \rightarrow \mu \mu decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |\eta |<2.7

    The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2

    Get PDF
    The design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016-2018 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fb(-1), 46.9 fb(-1), and 60.6 fb(-1) respectively of proton-proton collision data at a centre-of-mass energy of 13TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and b-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interaction multiplicities demonstrates how the inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme

    Direct constraint on the Higgs–charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector

    Get PDF
    A search for the Higgs boson decaying into a pair of charm quarks is presented. The analysis uses proton–proton collisions to target the production of a Higgs boson in association with a leptonically decaying W or Z boson. The dataset delivered by the LHC at a centre-of-mass energy of and recorded by the ATLAS detector corresponds to an integrated luminosity of 139 fb−1. Flavour-tagging algorithms are used to identify jets originating from the hadronisation of charm quarks. The analysis method is validated with the simultaneous measurement of WW, WZ and ZZ production, with observed (expected) significances of 2.6 (2.2) standard deviations above the background-only prediction for the (W/Z)Z(→cc¯) process and 3.8 (4.6) standard deviations for the (W/Z)W(→cq) process. The (W/Z)H(→cc¯) search yields an observed (expected) upper limit of 26 (31) times the predicted Standard Model cross-section times branching fraction for a Higgs boson with a mass of , corresponding to an observed (expected) constraint on the charm Yukawa coupling modifier |κc|<8.5 (12.4), at the 95% confidence level. A combination with the ATLAS (W/Z)H,H→bb¯ analysis is performed, allowing the ratio κc/κb to be constrained to less than 4.5 at the 95% confidence level, smaller than the ratio of the b- and c-quark masses, and therefore determines the Higgs-charm coupling to be weaker than the Higgs-bottom coupling at the 95% confidence level

    Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of the electroweak production of two jets in association with a ZγZ\gamma pair with the ZZ boson decaying into two neutrinos. It also presents the search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at s\sqrt{s} = 13 TeV collected with the ATLAS detector corresponding to an integrated luminosity of 139 fb1^{-1}. The event signature, shared by all benchmark processes considered for measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. For electroweak production of ZγZ\gamma in association with two jets, the background-only hypothesis is rejected with an observed (expected) significance of 5.2 (5.1) standard deviations. The measured fiducial cross-section for this process is 1.31±\pm0.29 fb. Observed (expected) upper limit of 0.37 (0.34) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson to a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 (0.017), assuming the 125 GeV Standard Model Higgs boson production cross-section

    Achieving near-capacity performance on multiple-antenna channels with a simple concatenation scheme

    Get PDF
    This paper proposes a capacity-approaching, yet simple scheme for multi-input multiple-output (MIMO) channels. The proposed scheme is based on a concatenation of a mixture of short memory-length convolutional codes or repetition codes and a short, and simple rate-1 linear block code, followed by either 1-dimensional (1-D) anti-Gray or Gray mapping of quadrature phase-shift keying (QPSK) modulation. By interpreting the rate-1 code and the 1-D mapping as a multi-D mapping performed over multiple transmit antennas, the error performance is analyzed in two regions. In the error-floor region, a tight union bound and the corresponding design criterion on the asymptotic performance are derived. The bound provides a useful tool to predict the error performance at relatively low bit error rate (BER) values. Based on the obtained design criterion, an optimal rate-1 code for each 1-D mapping is then constructed to achieve the best asymptotic performance. In the turbo pinch-off region, by using extrinsic information transfer (EXIT) charts, the most suitable mixed codes are selected for both symmetric and asymmetric antenna configurations. It is demonstrated that the simple concatenation scheme can achieve a near-capacity performance over the MIMO channels. Furthermore, its error performance is shown to be comparable to that obtained by using well-designed irregular LDPC and RA codes, and therefore, the proposed scheme significantly outperforms a scheme employing a parallel concatenated turbo code. Simulation results in various cases are provided to verify the analysis

    A simple near-capacity concatenation scheme over MISO channels

    Get PDF
    This paper proposes a capacity-approaching, yet simple scheme over a multiple-input single-output (MISO) wireless fading channel, which is very common in the downlink of a cellular system. The proposed scheme is based on a concatenation of a mixture of short memory-length convolutional codes or repetition codes and a short, and simple rate-1 linear block code, followed by either 1-dimensional (1-D) anti-Gray or Gray mapping of quadrature phase-shift keying (QPSK) modulation. By interpreting rate-1 code together with 1-D mapping as a multi-D mapping performed over multiple transmit antennas, the error performance is analyzed in the turbo pinch-off region using EXIT chart. At first, a simple design criterion on the bit-wise mutual information with perfect a priori information is derived. Based on the obtained design criterion, an optimal rate-1 code for each 1-D mapping is then constructed to maximize the bit-wise mutual information with perfect a priori information. The combination of optimal rate-1 code and 1-D mapping results in a steep inner detector's EXIT curve over an MISO channel, which matches very well to that of a simple outer code. It is demonstrated that the simple concatenation scheme can achieve a near-capacity performance over the MISO channels. In some cases, the selected mixed code is just a simple repetition code
    corecore