262 research outputs found

    A Phase 1 Trial of CNDO-109-Activated Natural Killer Cells in Patients with High-Risk Acute Myeloid Leukemia

    Get PDF
    Natural killer (NK) cells are an emerging immunotherapy approach to acute myeloid leukemia (AML); however, the optimal approach to activate NK cells before adoptive transfer remains unclear. Human NK cells that are primed with the CTV-1 leukemia cell line lysate CNDO-109 exhibit enhanced cytotoxicity against NK cell–resistant cell lines. To translate this finding to the clinic, CNDO-109–activated NK cells (CNDO-109-NK cells) isolated from related HLA-haploidentical donors were evaluated in a phase 1 dose-escalation trial at doses of 3 × 105 (n = 3), 1 × 106 (n = 3), and 3 × 106 (n = 6) cells/kg in patients with AML in first complete remission (CR1) at high risk for recurrence. Before CNDO-109-NK cell administration, patients were treated with lymphodepleting fludarabine/cyclophosphamide. CNDO-109-NK cells were well tolerated, and no dose-limiting toxicities were observed at the highest tested dose. The median relapse-free survival (RFS) by dose level was 105 (3 × 105), 156 (1 × 106), and 337 (3 × 106) days. Two patients remained relapse-free in post-trial follow-up, with RFS durations exceeding 42.5 months. Donor NK cell microchimerism was detected on day 7 in 10 of 12 patients, with 3 patients having evidence of donor cells on day 14 or later. This trial establishes that CNDO-109-NK cells generated from related HLA haploidentical donors, cryopreserved, and then safely administered to AML patients with transient persistence without exogenous cytokine support. Three durable complete remissions of 32.6 to 47.6+ months were observed, suggesting additional clinical investigation of CNDO-109-NK cells for patients with myeloid malignancies, alone or in combination with additional immunotherapy strategies, is warranted

    IL-27 Imparts Immunoregulatory Function to Human NK Cell Subsets

    Get PDF
    Interleukin-27 (IL-27) is a cytokine with multiple roles in regulating the immune response, but its effect on human CD56bright and CD56dim NK cell subsets is unknown. NK cell subsets interact with other components of the immune system, leading to cytotoxicity or immunoregulation depending on stimulating factors. We found that IL-27 treatment results in increased IL-10 and IFN-Ξ³ expression, increased viability and decreased proliferation in both CD56bright and CD56dim NK cell subsets. More importantly, IL-27 treatment imparts regulatory activity to CD56bright NK cells, which mediates its suppressive function on T cells in a contact-dependent manner. There is growing evidence that CD56bright NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. Thus, understanding the role of IL-27 in NK cell function has important implications for treatment of autoimmune disorders

    Lymphocyte Subpopulations in Lymph Nodes and Peripheral Blood: A Comparison between Patients with Stable Angina and Acute Coronary Syndrome

    Get PDF
    Objective: Atherosclerosis is characterized by a chronic inflammatory response involving activated T cells and impairment of natural killer (NK) cells. An increased T cell activity has been associated with plaque instability and risk of acute cardiac events. Lymphocyte analyses in blood are widely used to evaluate the immune status. However, peripheral blood contains only a minor proportion of lymphocytes. In this study, we hypothesized that thoracic lymph nodes from patients with stable angina (SA) and acute coronary syndrome (ACS) might add information to peripheral blood analyses. less thanbrgreater than less thanbrgreater thanMethods: Peripheral blood and lymph nodes were collected during coronary by-pass surgery in 13 patients with SA and 13 patients with ACS. Lymphocyte subpopulations were assessed by flow cytometry using antibodies against CD3, CD4, CD8, CD19, CD16/56, CD25, Foxp3, CD69, HLA-DR, IL-18 receptor (R) and CCR4. less thanbrgreater than less thanbrgreater thanResults: Lymph nodes revealed a lymphocyte subpopulation profile substantially differing from that in blood including a higher proportion of B cells, lower proportions of CD8(+) T cells and NK cells and a 2-fold higher CD4/CD8 ratio. CD4(+)CD69(+) cells as well as Foxp3(+) regulatory T cells were markedly enriched in lymph nodes (p andlt; 0.001) while T helper 1-like (CD4(+)IL-18R(+)) cells were more frequent in blood (p andlt; 0.001). The only significant differences between ACS and SA patients involved NK cells that were reduced in the ACS group. However, despite being reduced, the NK cell fraction in ACS patients contained a significantly higher proportion of IL-18R(+) cells compared with SA patients (p andlt; 0.05). less thanbrgreater than less thanbrgreater thanConclusion: There were several differences in lymphocyte subpopulations between blood and lymph nodes. However, the lymphocyte perturbations in peripheral blood of ACS patients compared with SA patients were not mirrored in lymph nodes. The findings indicate that lymph node analyses in multivessel coronary artery disease may not reveal any major changes in the immune response that are not detectable in blood.Funding Agencies|Swedish Heart-Lung Foundation|20090489|Swedish Research Council|2008-2282

    Mechanistic model of natural killer cell proliferative response to IL-15 receptor stimulation

    Get PDF
    Natural killer (NK) cells are innate lymphocytes that provide early host defense against intracellular pathogens, such as viruses. Although NK cell development, homeostasis, and proliferation are regulated by IL-15, the influence of IL-15 receptor (IL-15R)-mediated signaling at the cellular level has not been quantitatively characterized. We developed a mathematical model to analyze the kinetic interactions that control the formation and localization of IL-15/IL-15R complexes. Our computational results demonstrated that IL-15/IL-15R complexes on the cell surface were a key determinant of the magnitude of the IL-15 proliferative signal and that IL-15R occupancy functioned as an effective surrogate measure of receptor signaling. Ligand binding and receptor internalization modulated IL-15R occupancy. Our work supports the hypothesis that the total number and duration of IL-15/IL-15R complexes on the cell surface crosses a quantitative threshold prior to the initiation of NK cell division. Furthermore, our model predicted that the upregulation of IL-15RΞ± on NK cells substantially increased IL-15R complex formation and accelerated the expansion of dividing NK cells with the greatest impact at low IL-15 concentrations. Model predictions of the threshold requirement for NK cell recruitment to the cell cycle and the subsequent exponential proliferation correlated well with experimental data. In summary, our modeling analysis provides quantitative insight into the regulation of NK cell proliferation at the receptor level and provides a framework for the development of IL-15 based immunotherapies to modulate NK cell proliferation

    Neuronal Activity Regulates Hippocampal miRNA Expression

    Get PDF
    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control

    Tumor Growth Decreases NK and B Cells as well as Common Lymphoid Progenitor

    Get PDF
    Background: It is well established that chronic tumor growth results in functional inactivation of T cells and NK cells. It is less clear, however, whether lymphopoeisis is affected by tumor growth. Principal Findings: In our efforts of analyzing the impact of tumor growth on NK cell development, we observed a major reduction of NK cell numbers in mice bearing multiple lineages of tumor cells. The decrease in NK cell numbers was not due to increased apoptosis or decreased proliferation in the NK compartment. In addition, transgenic expression of IL-15 also failed to rescue the defective production of NK cells. Our systematic characterization of lymphopoeisis in tumor-bearing mice indicated that the number of the common lymphoid progenitor was significantly reduced in tumor-bearing mice. The number of B cells also decreased substantially in tumor bearing mice. Conclusions and Significance: Our data reveal a novel mechanism for tumor evasion of host immunity and suggest a new interpretation for the altered myeloid and lymphoid ratio in tumor bearing hosts

    Stepwise Maturation of Lytic Granules during Differentiation and Activation of Human CD8+ T Lymphocytes

    Get PDF
    During differentiation, cytotoxic T lymphocytes (CTL) acquire their killing potential through the biogenesis and maturation of lytic granules that are secreted upon target cell recognition. How lytic granule load in lytic molecules evolves during CTL differentiation and which subsets of lytic granules are secreted following activation remains to be investigated. We set up a flow cytometry approach to analyze single lytic granules isolated from primary human CTL according to their size and molecular content. During CTL in vitro differentiation, a relatively homogeneous population of lytic granules appeared through the progressive loading of Granzyme B, Perforin and Granzyme A within LAMP1+ lysosomes. PMA/ionomycin-induced lytic granule exocytosis was preceded by a rapid association of the docking molecule Rab27a to approximately half of the lytic granules. Activated CTL were found to limit exocytosis by sparing lytic granules including some associated to Rab27a. Our study provides a quantification of key steps of lytic granule biogenesis and highlights the potential of flow cytometry to study organelle composition and dynamics

    IL-15 Participates in the Respiratory Innate Immune Response to Influenza Virus Infection

    Get PDF
    Following influenza infection, natural killer (NK) cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways. Blocking IL-15 delays NK cell entry to the site of infection and results in a disregulated control of early viral replication. By the same principle, viral control by NK cells can be therapeutically enhanced via intranasal administration of exogenous IL-15 in the early days post influenza infection. In addition to controlling early viral replication, this IL-15-induced mobilization of NK cells to the lung airways has important downstream consequences on adaptive responses. Primarily, depletion of responding NK1.1+ NK cells is associated with reduced immigration of influenza-specific CD8 T cells to the site of infection. Together this work suggests that local deposits of IL-15 in the lung airways regulate the coordinated innate and adaptive immune responses to influenza infection and may represent an important point of immune intervention

    Mifepristone Increases the Cytotoxicity of Uterine Natural Killer Cells by Acting as a Glucocorticoid Antagonist via ERK Activation

    Get PDF
    Background: Mifepristone (RU486), a potent antagonist of progesterone and glucocorticoids, is involved in immune regulation. Our previous studies demonstrated that mifepristone directly augments the cytotoxicity of human uterine natural killer (uNK) cells. However, the mechanism responsible for this increase in cytotoxicity is not known. Here, we explored whether the increased cytotoxicity in uNK cells produced by mifepristone is due to either anti-progesterone or anti-glucocorticoid activity, and also investigated relevant changes in the mitogen-activated protein kinase (MAPK) pathway. Methodology/Principal Findings: Uterine NK cells were isolated from decidual samples and incubated with different concentrations of progesterone, cortisol, or mifepristone. The cytotoxicity and perforin expression of uNK cells were detected by mitochondrial lactate dehydrogenase-based MTS staining and flow cytometry assays, respectively. Phosphorylation of components of the MAPK signaling pathway was detected by Western blot. Cortisol attenuated uNK cell-mediated cytotoxicity in a concentration-dependent manner whereas progesterone had no effect. Mifepristone alone increased the cytotoxicity and perforin expression of uNK cells; these effects were blocked by cortisol. Furthermore, mifepristone increased the phosphorylation of ERK1/2 in a cortisol-reversible manner. Specific ERK1/2 inhibitor PD98059 or U0126 blocked cortisol- and mifepristone-induced responses in uNK cells

    hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor for immunotherapy of uterine serous papillary carcinoma

    Get PDF
    BACKGROUND: Uterine serous papillary adenocarcinoma (USPC) is a highly aggressive variant of endometrial cancer. Human immunoconjugate molecule (hI-con1) is an antibody-like molecule targeted against tissue factor (TF), composed of two human Factor VII (fVII) as the targeting domain, fused to human immunoglobulin (Ig) G1 Fc as an effector domain. We evaluated hI-con1 potential activity against primary chemotherapy-resistant USPC cell lines expressing different levels of TF. METHODS: A total of 16 formalin-fixed, paraffin-embedded USPC samples were evaluated by immunohistochemistry (IHC) for TF expression. Six primary USPC cell lines, half of which overexpress the epidermal growth factor type II (HER2/neu) receptor at 3\ufe levels, were assessed by flow cytometry and real-time PCR for TF expression. Sensitivity to hI-con1-dependent cell-mediated cytotoxicity (IDCC) was evaluated in 5-hour-chromium release assays. Finally, to investigate the effect of interleukin-2 (IL-2) on IDCC, 5-h 51Cr assays were also conducted in the presence of low doses of IL-2 (i.e., 50\u2013100 IU ml 1). RESULTS: Cytoplasmic and/or membrane TF expression was observed in all 16 (100%) USPC samples tested by IHC, but not in normal endometrium. High expression of TF was found in 50% (three out of six) of the USPC cell lines tested by real-time PCR and flow cytometry when compared with normal endometrial cells (NECs; Po0.001). Uterine serous papillary adenocarcinoma cell lines overexpressing TF, regardless of their high or low HER2/neu expression, were highly sensitive to IDCC (mean killing\ub1s.d., 65.6\ub13.7%, range 57.5\u201377.0%, Po0.001), although negligible cytotoxicity against USPC was seen in the absence of hI-con1 or in the presence of Rituximab control antibody. The addition of low doses of IL-2 further increased the cytotoxic effect induced by hI-con1 against chemotherapy-resistant USPC. CONCLUSION: hI-con1 induces strong cytotoxicity against primary chemotherapy-resistant USPC cell lines overexpressing TF. The hI-con1 may represent a novel therapeutic agent for the treatment of patients harbouring advanced, recurrent and/or metastatic USPC refractory to standard treatment modalities
    • …
    corecore