158 research outputs found

    The Charge Form Factor of the Neutron at Low Momentum Transfer from the 2H⃗(e⃗,e′n)p^{2}\vec{\rm H}(\vec{\rm e},{\rm e}'{\rm n}){\rm p} Reaction

    Full text link
    We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio GEn/GMnG^{n}_{E}/G^{n}_{M} was extracted from the beam-target vector asymmetry AedVA_{ed}^{V} at four-momentum transfers Q2=0.14Q^{2}=0.14, 0.20, 0.29 and 0.42 (GeV/c)2^{2}.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Measurement of the proton electric to magnetic form factor ratio from \vec ^1H(\vec e, e'p)

    Full text link
    We report the first precision measurement of the proton electric to magnetic form factor ratio from spin-dependent elastic scattering of longitudinally polarized electrons from a polarized hydrogen internal gas target. The measurement was performed at the MIT-Bates South Hall Ring over a range of four-momentum transfer squared Q2Q^2 from 0.15 to 0.65 (GeV/c)2^2. Significantly improved results on the proton electric and magnetic form factors are obtained in combination with previous cross-section data on elastic electron-proton scattering in the same Q2Q^2 region.Comment: 4 pages, 2 figures, submitted to PR

    Measurements of electron-proton elastic cross sections for 0.4<Q2<5.5(GeV/c)20.4 < Q^2 < 5.5 (GeV/c)^2

    Full text link
    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 << Q2Q^2 << 5.5 (GeV/c)2(\rm GeV/c)^2. These measurements represent a significant contribution to the world's cross section data set in the Q2Q^2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace

    Nuclear transparency from quasielastic A(e,e'p) reactions uo to Q^2=8.1 (GeV/c)^2

    Get PDF
    The quasielastic (e,e′^\primep) reaction was studied on targets of deuterium, carbon, and iron up to a value of momentum transfer Q2Q^2 of 8.1 (GeV/c)2^2. A nuclear transparency was determined by comparing the data to calculations in the Plane-Wave Impulse Approximation. The dependence of the nuclear transparency on Q2Q^2 and the mass number AA was investigated in a search for the onset of the Color Transparency phenomenon. We find no evidence for the onset of Color Transparency within our range of Q2Q^2. A fit to the world's nuclear transparency data reflects the energy dependence of the free proton-nucleon cross section.Comment: 11 pages, 6 figure

    BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis

    Get PDF
    Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a "time-on-task" effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal

    Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopaty

    Get PDF
    The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer’s disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer’s disease

    Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer

    Get PDF
    AbstractColorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been found to be associated with CRC and might have a prognostic and predictive significance in CRC patients. This review provides an overview of the intestinal stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), B cell–specific Moloney murine leukemia virus insertion site 1 (BMI1), Musashi1 (MSI1), and sex-determining region y-box 9 (SOX9) and their implications in human CRC. The exact roles of the intestinal stem cell markers in CRC development and progression remain unclear; however, high expression of these stem cell markers have a potential prognostic significance and might be implicated in chemotherapy resistance
    • …
    corecore