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Review
Clinical Implications of Intestinal Stem Cell
Markers in Colorectal Cancer*

Maiken Lise Marcker Espersen,1,2 Jesper Olsen,2,3 Dorte Linnemann,1

Estrid Høgdall,1 Jesper T. Troelsen2

Abstract
Colorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved
differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been
found to be associated with CRC and might have a prognostic and predictive significance in CRC patients. This review
provides an overview of the intestinal stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5
(LGR5), B cellespecific Moloney murine leukemia virus insertion site 1 (BMI1), Musashi1 (MSI1), and sex-determining
region y-box 9 (SOX9) and their implications in human CRC. The exact roles of the intestinal stem cell markers in CRC
development and progression remain unclear; however, high expression of these stem cell markers have a potential
prognostic significance and might be implicated in chemotherapy resistance.

Clinical Colorectal Cancer, Vol. 14, No. 2, 63-71 ª 2015 The Authors. Published by Elsevier Inc. All rights reserved.
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Introduction
Colorectal cancer (CRC) is one of the most common cancers in

the developed world and carries the second highest mortality rate.1

Thus, there is a great need for improved differentiated diagnosis and
personalized treatment of CRC patients.

Sporadic CRC arises as a consequence of lacking homeostatic
control of proliferation and apoptosis within colon epithelial cells,
driving the cells toward immortality and enhanced proliferation.
This deregulation is caused by genetic and epigenetic alterations
impairing essential pathways involving p53, PI3K, epidermal
growth factor receptor (EGFR), and the canonical Wnt-signaling
pathway. The Wnt signaling pathway is a major driver of CRC
initiation and progression. Upon activation of the Wnt signaling
pathway, b-catenin is translocated from the cytoplasm into the
nucleus, where it associates with TCF/LEF transcription factors,
thus regulating downstream Wnt target genes, such as CMYC.2,3
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The essential Wnt-associated gene adenomatous polyposis coli
(APC) is one of the most frequently mutated genes in early
neoplastic transformation. Other Wnt signalingeassociated genes
have additionally been described as altered in CRC, including the
ring finger protein 43 (RNF43) gene, which recently was described to
be one of the most commonly mutated genes in CRC.2-7 Moreover,
TP53 and the KRAS oncogene are also commonly affected in CRC,
with the mutational status of KRAS oncogene being predictive for
anti-EGFR monoclonal antibody therapy.8

Another hallmark of CRC is DNA mismatch repair (MMR)
deficiency, which is reported in approximately 15% of all cases of
CRC. The most commonly affected MMR genes are MLH1,
MSH2, and MSH6. MMR deficiency causes accumulation of mu-
tations and microsatellite instability (MSI), where microsatellite
sequences in the genome are altered. MSI tumors are further sub-
divided according to the frequency of MSI into high frequency of
MSI or low frequency of MSI. Colorectal tumors with impaired
MMR are predominantly associated with right-sided colon tumors
and correlate to a favorable prognosis.9

The traditional stochastic model of cancer development argues
that in principle, all tumor cells are biologic equivalents and have
the potential to proliferate and drive tumor growth.10 Within recent
years, the traditional cancer model has been challenged by another
model, the cancer stem cell model. The cancer stem cells model
proposes that tumors are composed of a hierarchy of cells that
are biologically distinct.10,11 Cells with stem cell properties reside
within the tumor and are responsible for tumor initiation, pro-
gression, metastasis, recurrence, and resistance to chemotherapy.12
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Similar to stem cells, cancer stem cells are able to both self-renew
and can differentiate into progenitors. They are largely believed to
be the result of acquired epigenetic and genetic changes in the stem
cells. The adult stem cells already possess critical characteristics such
as self-renewal capacity and long-term replicative potential, but
during normal homeostasis, these capacities are tightly regulated.
Because of the properties of the stem cells, the number of genetic
alterations before transformation is hypothetically fewer than what
more differentiated cells need to acquire to transform. Furthermore,
the longevity of the stem cells provides the necessary time to
accumulate oncogenic alterations.

Extensive studies have been performed to identify putative intes-
tinal stem cells markers and their potential role in cancer.13 Some of
the driver genomic alterations of CRC are associated to the intestinal
stem cells, including sex-determining region y-box 9 (SOX9)5 and
leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5)
through the R-spondins,4 indicating that the stem cell markers play
significant roles in colorectal tumorigenesis. Several intestinal stem
cell markers has been identified with LGR5 being the most investi-
gated and established marker.14 LGR5þ cells also correlate to
expression of the markers olfactomedin-4 (OLMF4)15 and achaete
scute complex like 2 (ASCL2).16,17 The Lgr5þ stem cell population
marks the population of crypt base columnar cells located inter-
spersed between the Paneth cells at the bottom of the small intestinal
crypts, which previously was suggested as the stem cell population.18

Simultaneously, another stem cell population in the small intestine
has been identified at position þ4 (þ4 referring to the location of
stem cells approximately 4 cells from the bottom of the crypts).19

Several þ4 stem cell markers have been suggested, including B
cellespecific Moloney murine leukemia virus insertion site 1 (Bmi1),19

telomerase reverse transcriptase (Tert),20 and homeodomain only pro-
tein X (Hopx).21 Leucine-rich repeats and immunoglobulin-like domains
1 (Lrig1),22,23 Musashi1 (MSI1),24-26 and Sox927,28 have been sug-
gested as more general markers marking both stem cell populations.

Most of the studies have focused on the adult stem cells of the
small intestine. However, within recent years, several of these stem
cell markers have been linked to CRC, and an increase in their
expression level in the primary tumors of CRC patients has been
correlated to a poor prognosis and chemotherapy resistance. Some of
these markers have been more extensively investigated than others.
The most investigated intestinal stem cell markers in a clinical setting
are LGR5,17,29-41 BMI1,42-49 MSI1,50-52 and SOX9.5,28,53-61 This
review evaluates the potential clinical implications of these 4 putative
intestinal stem cell markers and their potential role in human CRC.

LGR5
LGR5 was initially identified in 1998.62 The receptor did not

receive much attention until 2007, where it was reported to be a
potential stem cell marker of the small intestine and colon in
mice.18 Lgr5 expressing cells are long-lived and have the ability to
generate all cell types of the small intestine and colon epithelia.18

Lgr5 is expressed in cells at the bottom of the colonic crypts and
in crypt base columnar cells interspersed between the Paneth cells at
the crypt bottom of the small intestine in mice.18 Accordingly,
immunohistochemical staining of LGR5 shows that the protein is
expressed in cytoplasm and membrane of a few cells, located at the
crypt base of human colon tissue.29-31
Clinical Colorectal Cancer June 2015
Lgr5 expressing cells are proposed to mark actively cycling stem
cells exerting a homeostatic role in the small intestine of mice.18

Furthermore, spheroid cultures derived from human primary tu-
mors are enriched for LGR5 expression, and the receptor has been
suggested to be a selective cancer stem cell marker.63,64

In 2011, Wnt signaling agonists, R-spondins, were identified as
the ligands for the LGR5 receptor in human embryonic kidney
cells.65-67 The binding of the R-spondins to the receptor enhanced
downstream Wnt signaling.65-67 Because LGR5 has been identified
as a Wnt target gene, this indicates a positive feedback loop
mechanism.68 Furthermore, b-catenin has been reported to be
positively correlated with LGR5 in human CRC tissue.29,32 How-
ever, later studies have not confirmed this correlation.17,31 Knock-
down of LGR5 in human CRC cell lines has also been linked to a
gene expression profile consistent with an activated Wnt signaling
pathway, suggestive of a negative feedback loop of LGR5 regula-
tion.69 Furthermore, a recent study reported Wnt signaling inhi-
bition and antioncogenic effects of R-spondin 2 in human CRC
cells and noted that this might be dependent on LGR5 expression.70

This is somewhat contradictory to studies showing that R-spondins
potentiate Wnt signaling4,65-67,71 and studies linking LGR5
expression to tumorigenic properties.34,35,72 A study reported that
silencing of LGR5 in human CRC cells resulted in reduced prolif-
eration, migration, and colony formation in vitro as well as in
reduced tumorigenicity in vivo.73 This has been supported by
others, who have additionally described increased apoptosis after
knockdown of LGR5 in human CRC and adenoma cell lines.33,72

These studies suggest that LGR5 and the R-spondin ligands
might play opposing roles in different contexts that remain to be
elucidated.

Increased protein and mRNA expression of LGR5 has been re-
ported in adenomas and CRC tissue compared to normal colon
mucosa29,31-38 (Table 1). LGR5 is localized in the membrane and
cytoplasm of tumor cells in adenoma and CRC tissue.29,31,32,36 The
expression pattern of LGR5 has been reported to be heterogeneous
throughout the tumor or as a local expression pattern with a patchy
distribution.29,30,32,37 In addition, allelic variations of LGR5 affect
the LGR5 protein expression negatively, and an association between
LGR5 polymorphisms and increased time to tumor recurrence has
been reported in CRC patients.39,40

LGR5 expression in primary tumors from CRC patients and
correlations to clinicopathologic features, such as histologic grade,
depth of invasion, tumor differentiation, and histologic subtype,
are contradictory.17,31,32,36,37 One study found a lower expression
of LGR5 in MMR deficient tumors compared to MMR intact
tumors.17 Furthermore, LGR5 expression might also correlate to
lymph node and distant metastasis.30,33,36,37 A positive association
between high expression of LGR5 at the invasive front of the
tumor and advanced disease stage has been reported.31 In addition,
LGR5 expression at the luminal surface was inversely correlated to
the progression of disease.31 However, others have found no sig-
nificant impact of the distribution of LGR5 expressing cells within
CRC.29

High LGR5 expression in CRC might correlate to lower disease-
free survival, overall survival, and cancer-specific survival, indicating
that LGR5 is a potential prognostic marker.32,33,36 However, this is
inconsistent, with other studies finding that LGR5 does not have a



Table 1 Implications of LGR5 Expression in Human CRC

Main Findings
Study Cohort

(No. of Specimens)
AJCC Stage

(No. of Patients Analyzed) Reference

LGR5 expression is not associated with prognosis. Tumor (891) NS Ziskin et al., 201317

Increased LGR5 expression in CRC and correlates with
female sex.

Tumor (102)
Unpaired healthy (12)

I þ II (35)
III þ IV (67)

Fan et al., 201029

Increased expression of LGR5 in distant metastasis derived
from tumors with LGR5 positive cells in tumor buds and
vascular compartments of the primary tumor.

Tumor (89) III (45)
IV (44)

Kleist et al. , 201130

LGR5 expression at the invasive front is positively correlated
to advanced disease.
LGR5 expression at the luminal surface is inversely correlated
to disease stage.

Tumor (30) I þ II (17)
III þ IV (13)

Takeda et al., 201131

LGR5 expression correlates with TNM stage, lymph node
metastasis, and vascular invasion.
High levels of LGR5 correlate to poor prognosis.
LGR5 is an independent prognostic factor.

Tumor (53)
Paired healthy (53)

I (9)
II (21)
III (16)
IV (7)

He et al., 201432

LGR5 expression correlates with AJCC stage and TNM stages.
High LGR5 expression correlates with poor prognosis.

Tumor (296)
Paired healthy (216)

I (60)
II (91)
III (67)
IV (78)

Hsu et al., 201333

LGR5 mRNA is significantly up-regulated in CRC. Tumor (39)
Paired healthy (39)

I to IV (39) McClanahan et al., 200634

Patients with high LGR5 expression in their primary tumors
have a poorer prognosis.

Tumor (180)
Paired healthy (180)

0 (21)
I (22)
II (54)
III (61)
IV (19)

Takahashi et al., 201135

LGR5 is an independent prognostic marker. Tumor (192)
Paired healthy (80)

I (47)
II (70)
III (65)
IV (10)

Wu et al., 201236

LGR5 correlates with lymph node metastasis, vascular
invasion, lymphatic invasion, tumor depth, and tumor grade.

Tumor (50)
Paired healthy (50)

II (25)
III (25)

Uchida et al., 201037

LGR5 expression is increased in stage IV CRC patients
compared to normal matched mucosa

Tumor (42)
Paired healthy (42)

IV (42) Gao et al., 201438

LGR5 homozygous wt genotype in blood associated with a
lower time to tumor reoccurrence in CRC patients than LGR5
heterozygote patients.

Tumor (234) High risk II (105)
III (129)

Gerger et al., 201139

LGR5 gene variation correlates negatively with LGR5 protein
expression in CRC.

Tumor (89)
Unpaired buccal swaps (72)

III (45)
IV (44)

Kleist et al., 201240

LGR5 expression is associated with a favorable prognosis. Tumor (90) II (90) de Sousa E Melo et al., 201141

Abbreviations: AJCC ¼ American Joint Committee on Cancer; CRC ¼ colorectal cancer; LGR5 ¼ leucine-rich repeat-containing G-protein-coupled receptor-5; NS ¼ Not specified; Paired healthy ¼
healthy colon mucosa from same individual as investigated tumor; TNM ¼ tumor, node, metastasis classification system; wt ¼ wild type.
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prognostic significance17 and that high expression of Wnt-driven
intestinal stem cell markers, including LGR5, within CRC tissue
is associated with a favorable prognosis.41 Interestingly, increased
LGR5 mRNA expression in the peripheral blood of CRC patients
has also been associated with a poor outcome.74 This might reflect
circulating cancer cells with stem cellelike properties playing a role
in the metastatic event.

CRC cell lines studies describe LGR5þ cells to be associated with
chemotherapeutic resistance and resistance mechanisms.75,76

Accordingly, patients with low levels of LGR5 within their pri-
mary tumors have a significant better response rate to 5-fluorouracil
(5-FU)-based therapy than patients with high levels of LGR5.33

Studies on the implications of LGR5 in CRC patients are sum-
marized in Table 1.

These studies suggest that LGR5 might be of relevance as a
prognostic and predictive marker.
BMI1
BMI1 is a component of the polycomb repressive complex 1, which

plays an important role in gene silencing by chromatinmodification in
cells, including, among others, embryonic and adult stem cells.77,78

Bmi1 was initially identified as an oncogene that, together with c-
myc, plays a role in initiation ofmouse B cell lymphomas.79 It was later
found to be important in hematopoiesis and neural development.80

BMI1 targets the Ink4a/Arf locus, which encodes the critical cell
cycle regulators p16 and p19ARF (p14ARF in humans).81 These are
involved in the retinoblastoma protein (Rb) and p53 signaling path-
ways, regulating cell cycle and apoptosis.82

In vivo lineage tracing suggests that Bmi1 expression marks small
intestinal stem cells located at the þ4 position from the crypt
bottom in mice.19 These stem cells are functionally distinct from
the Lgr5 expressing stem cell population.83 The þ4 putative stem
cells are characterized by being quiescent, being resistant to
Clinical Colorectal Cancer June 2015 - 65
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irradiation, and having regenerative potential after injury or ablation
of Lgr5 expressing cells.19,83,84 Whether two functionally distinct
intestinal adult stem cell populations exist and whether expression of
Bmi1 actually marks þ4 stem cells are still controversial.85,86

BMI1 has been described to be low expressed or absent in the
nucleus of human colon epithelial cells at the very bottom of the
crypt.42-44 The exact role of BMI1 in the normal colon and in
CRC is unclear. Table 2 lists studies that have investigated the
implications of BMI1 in human CRC. Several studies report
overexpression of the BMI1 at the protein and mRNA levels in
CRC relative to healthy colon tissue.42-47 Human CRC cells
have been proposed to require BMI1 expression for maintenance
of tumor growth.87 Furthermore, knockdown of BMI1 severely
affects the self-renewal capacity in vitro and impairs the cancer-
initiating potential of human colon cancer cells in mice.87 BMI1
expression might be inversely correlated to various cell cycle pro-
teins, eg, p14 and p16, and positively correlated to c-MYC
expression, although findings are contradictory.43-45 Inhibition of
BMI1 results in growth arrest of the preestablished tumors
in vivo.87 These results suggest BMI1 as a relevant therapeutic
target of CRC.

BMI1 expression has also been correlated to several clinico-
pathologic factors, such as tumor size, serum carcinoembryonic
antigen levels, and histologic differentiation grade.43,46 A gradient of
BMI1 expression can be observed in human colon precancerous and
cancerous tissue. Here, low-grade intraepithelial dysplastic tissue has
the lowest expression and high-grade dysplastic and cancerous tissue
has the highest.44 BMI1 expression is correlated to cancer stage,
suggesting that BMI1 might be associated with colon cancer pro-
gression.45-47
Table 2 Implications of BMI1 in CRC Patients

Main Findings (N

BMI1 is overexpressed in CRC.

BMI1 expression correlates with gender, histologic tumor differentiation, tumor
size, and serum CEA levels.
BMI1 expression has an inverse correlation to the expression of p16 and p14.

BMI1 is overexpressed in human low-grade intraepithelial dysplasia,
high-grade intraepithelial dysplasia, and cancer.

High expression of BMI1 correlates with metastasis and advanced stage of
cancer.

High expression of BMI1 is associated with a lower overall survival.

Patients with BMI1 positive tumors have a lower disease-free survival and a
lower overall survival. P

High expression of BMI1 is associated with a better prognosis.
Combination of BMI1 with other biomarkers improves the prognostic
stratification when compared to applying the biomarkers individually.

Patients with decreased postoperative plasma BMI1 mRNA levels have a
better prognosis than patients with increased postoperative BMI1 mRNA levels

Abbreviations: AJCC ¼ American Joint Committee on Cancer; BMI1 ¼ B cellespecific Moloney muri
NS ¼ not specified; Paired healthy ¼ healthy colon mucosa from same individual as investigated t
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The prognostic significance of BMI1 expression in colorectal
tumors is conflicting. More patients with BMI1 positive tumors
have tumor recurrence or metastases compared to patients with
BMI1 negative tumors.47 Furthermore, high BMI1 expression in
primary tumors from CRC patients is an independent prognostic
factor for disease-free survival and for overall survival.46,47 However,
high BMI1 expression is also correlated with a better prognosis
compared to patients with low expression.48 By combing several
biomarkers with the BMI1 expression, prognostic stratification is
improved.48 In addition, another recent study reported that patients
with decreased postoperative plasma mRNA levels of BMI1
compared to patients with increased postoperative mRNA levels
correlated with a favorable prognosis in CRC.49 These studies
suggest that BMI1 may be of relevance as a prognostic indicator in
CRC. However, the exact directionality of its prognostic utility
remains to be elucidated.

MSI1
MSI1 is an evolutionary conserved RNA-binding protein

initially identified in Drosophila as a protein important for sensory
organ development and as a neuronal stem cell marker in mam-
mals.88-90 MSI1 is one of the first proposed intestinal stem cell
markers and may contribute to the undifferentiated state of intes-
tinal stem cells.24,25,91 MSI1 is mainly expressed in the cytoplasm
of human colon epithelia cells positioned between cells 1 and 10
from the bottom of the crypt.25 Occasionally, MSI1 is also
expressed in the nucleus of these cells.25 Furthermore, Msi1
expressing cells have been shown to correspond to cells expressing
the intestinal stem cell marker Lgr5 and the þ4 stem cell marker
Tert in mice.20,26
Study Cohort
o. of Specimens)

AJCC Stage
(No. of Patients Analyzed) Reference

Tumor (11)
Paired healthy (11)

NS Reinish et al., 200642

Tumor (87)
Paired healthy (87)

NS; N and M stage provided Kim et al., 200443

NS NS Tateishi et al., 200644

Tumor (43)
Paired healthy (43)

I (9)
II (18)
III (10)
IV(6)

Liu et al., 201045

Tumor (98)
Paired healthy (98)

II (29)
III (69)

Du et al., 201046

Tumor (203)
aired healthy (203)

I (24)
II (81)
III (80)
IV (18)

Li et al., 201047

Tumor (247)
Paired healthy (47)

I (52)
II (110)
III (85)

Benard et al., 201448

Tumor (45) I þ II (15)
III þ IV (12)
NS (18)

Pun et al., 201449

ne leukemia virus insertion site 1; CEA ¼ carcinoembryonic antigen; CRC ¼ colorectal cancer;
umor.
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MSI1 functions as suppressor by binding to its target mRNA,
thus repressing translation of its downstream targets.92 Additionally,
MSI1 compete with eukaryotic initiation factor 4G (eIF4G) for
binding to the poly(A)-binding protein (PABP), thereby inhibiting
translation initiation.93 Two of the most recognized RNA targets of
MSI1 are the genes encoding the Notch antagonist Numb and p21,
an inhibitor of cyclin-dependent kinases.94,95 MSI1 was also found
to negatively regulate APC translation in human cultured colono-
cytes.96 Interestingly, reduced APC expression leads to increased
levels of MSI1, suggesting that MSI1 itself is a target of the Wnt
signaling pathway,96 consistent with an earlier study describing a
TCF/LEF binding site on the Msi1 promoter.97 This positive
feedback loop might be important for regulating homeostasis of
colon tissue, and if disturbed, it could lead to tumor formation.

Intestinal epithelium cells overexpressing Msi1 increase prolifer-
ation and acquire tumorigenic features in xenografts.97 In accor-
dance, knockdown of MSI1 in human colon cancer cells leads to
inhibition of proliferation and reduced migratory potential.50

Furthermore, knockdown of MSI1 in xenografts results in tumor
growth arrest, suggesting that MSI1 may play a role in tumor
progression.51

Studies investigating the implications of MSI1 in human CRC
are listed in Table 3. The level of MSI1 mRNA expression has been
reported to be significantly increased in human colorectal adeno-
carcinomas, and the expression level varies in normal, adenoma, and
carcinoma of colon tissues.50-52 MSI1 expressing tumor cells of the
colon predominantly also, although not exclusively, express MSI1 in
the cytoplasm.52 MSI1 is often focally expressed in adenomas,
whereas the expression pattern in carcinomas is more diffuse.52

Moreover, MSI1 overexpression is significantly associated with the
proliferation marker Ki-67, advanced cancer stage, and a more
aggressive disease phenotype.50-52 When adjusted for American
Joint Committee on Cancer stage, vessel infiltration, histologic type,
and grade, MSI1 appears as an independent prognostic marker for
prediction of poor outcome in stage III and IV disease (but not stage
I and II disease).50 Furthermore, positive MSI1 expression in the
primary tumor is associated with a nearly 5.4-fold increased risk of
distant metastasis.50 This poor outcome in patients with stage III
and IV cancers, who generally receive adjuvant chemotherapy, may
be explained by a study in mice showing that MSI1 positive cells are
insensitive to 5-FU.98
Table 3 Implications of MSI1 in CRC Patients

Main Findings
Stud

(No. of

MSI1 is an independent prognostic marker to predict poor outcome. Tum
Paired

>2-fold increase in MSI1 mRNA expression in majority of CRC. Tu
Paired

MSI1 expression correlates to TNM stage. Tu
Unpaire

MSI1 mRNA expression differs in normal, adenoma, and carcinoma. Tu
Unpaired

Abbreviations: AJCC ¼ American Joint Committee on Cancer; CRC ¼ colorectal cancer; MSI1 ¼ M
investigated tumor; TNM ¼ tumor, node, metastasis classification system.
These studies suggest that MSI1 might be of relevance as both a
negative prognostic marker and a predictive marker.

SOX9
SOX9 is a transcription factor involved in numerous develop-

mental processes and is required for regulation of cell proliferation,
senescence, and lineage commitment.53,99-101 A Sox9 expressing
population of cells has been shown to exert multipotency and self-
renewal capacity, as well as to have the ability to repopulate the
intestinal crypts in mice.102 Similarly, a study of colon epithelial
stem cells describes that cells expressing high levels of Sox9 are
associated with a more undifferentiated cell population having stem
cell characteristics in vitro and these cells are furthermore enriched
for Lgr5 mRNA.28 Cells with low Sox9 expression accordingly have
a gene expression profile consistent with a more differentiated
phenotype.28 This is in agreement with the expression observed in
human colon epithelia, where SOX9 is described as being primarily
expressed in the nucleus of cells in the lower proliferative part of the
colonic crypts and with a weaker expression in cells toward the
luminal surface.54-56,100 Furthermore, inactivation of Sox9 in mice
results in aberrant structure of the colon tissue with villus-like
protrusions into the lumen, similar to the small intestinal
morphology, emphasizing the importance of Sox9 in the small in-
testinal and colon morphology.101 Additionally, the goblet cell
lineage of the colon is strongly reduced in the Sox9 deficient
mice.101 Somewhat contradicting to this a study showed that SOX9
indirectly represses genes associated with goblet cell differentiation,
eg, the mucin-encoding gene MUC2.100

The exact role of SOX9 in carcinogenesis and cancer pro-
gression is, however, controversial because both oncogenic and
tumor-suppressing functions of the protein have been de-
scribed.53,55,56,103-105 SOX9 has been shown to be a direct Wnt
signaling target of the activated b-catenineTCF4 complex in hu-
man colon carcinoma cells,100 but another study showed that SOX9
potentially inhibit the b-catenineTCF4 complex, suggesting a
negative feedback loop.101 Furthermore, Bmi1 has been identified as
a potential SOX9 target in mouse primary cells and transformed
cells, hence repressing the tumor suppressors p16 and p19ARF,
leading to cell cycle progression and bypassing of apoptosis.53

Overexpression of SOX9 in human CRC cells induces an increase
of BMI1 with a subsequent decrease in p16, whereas the opposite
y Cohort
Specimens)

AJCC Stage
(No. of Patients Analyzed) Reference

or (203)
healthy (203)

I (24)
II (81)
III (80)
IV (18)

Li et al., 201150

mor (15)
healthy (15)

NS Sureban et al., 200851

mor (69)
d healthy (8)

I þ II (39)
III þ IV (30)

Fan et al., 201052

mor (31)
healthy (10)

NS Fan et al., 201052

usashi1; NS ¼ not specified; Paired healthy ¼ healthy colon mucosa from same individual as
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effect has been observed by SOX9 knockdown.53 In contrast, mice
with Sox9 deficiency show extensive hyperplasia of the colon with
numerous enlarged crypts and some with cystic appearances, indi-
cating increased proliferation.101 However, no malignant trans-
formation was seen, which implies that Sox9 deficiency alone cannot
induce malignancy.101

One possible explanation for the discrepancy of results with
regard to SOX9 could be that different variants of the protein exist.
One study identified SOX9 as frequently mutated in CRC,5 and
others have described a low copy number gain of chromosome 17,
where the SOX9 gene is located.53 This could be a possible mech-
anism explaining the SOX9 overexpression in some patients.
Interestingly, a truncated variant of SOX9 lacking its transactivation
domain has been described in human CRC cell lines and tumors.56

The variant activated the canonical Wnt signaling pathway, thus
having oncogenic properties, whereas the fully transcribed and
translated SOX9 protein repressed the Wnt signaling pathway.56

Both the truncated and the full length SOX9 is increased in
human colon cancer tissue.56
Table 4 Implications of SOX9 in CRC Patients

Main Findings
Study Cohort

(No. of Specimens)

SOX9 is frequently mutated in nonhypermutated tumors. Tumor (224)
Paired healthy/blood (224

Heterogeneous expression of SOX9 in tumors. Tumor (3)

SOX9 is up-regulated in CRC. Tumor (110)
Unpaired healthy (22)

SOX9 mRNA is up-regulated in CRC and associated with
advanced tumor stage.

Tumor (79)
Paired healthy (25)

SOX9 overexpression correlates with poorer survival in
5-FU-treated stage III patients.

Tumor (441)
Paired healthy (441)

Strong SOX9 expression is most common in
non-mucin-producing CRC.
Strong SOX9 expression correlated with lower overall
survival.

Tumor (188)
Paired healthy (188)

SOX9 is overexpressed in CRC. Tumor (27)
Paired healthy (27)

A truncated variant of SOX9 is overexpressed in CRC. Tumor (17)
Paired healthy (17)

SOX9 is up-regulated in CRC. Tumor (10)
Paired healthy (10)

Increased SOX9 gene expression in CRC. Tumor (77)
Paired healthy (77)

High levels of SOX9 associated with age and MSI.
No significant decrease in survival for the patients with
high SOX9 expression.

Tumor (31)
Paired healthy (31)

SOX9 is up-regulated in CRC.
SOX9 is down-regulated in MSI relative to MSS tumors.

Tumor (424)
Paired healthy (20)

SOX9 was down-regulated in CRC. Tumor (10)
Paired healthy (10)

Abbreviations: AJCC ¼ American Joint Committee on Cancer; CRC ¼ colorectal cancer; 5-FU ¼ 5-fluo
healthy ¼ healthy colon mucosa from same individual as investigated tumor; SOX9 ¼ sex-determin
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Several studies have also described increased expression of SOX9
at both mRNA and protein level in human CRC specimens and cell
lines compared to healthy colon epithelia.53-55,57-60 Only one small
study (n ¼ 10) has described a decrease in SOX9 expression in
colorectal adenocarcinomas.61 There is no significant difference in
SOX9 expression when comparing adenomatous expression and
cancerous expression.55 SOX9 is expressed in a random heteroge-
neous manner throughout colorectal tumors.28,55 Moreover, a
strong expression of SOX9 is more common in non-mucin-
producing CRC than mucinous or signet ring carcinomas.57 One
study describes that SOX9 overexpression correlates with vascular
invasion in the primary tumor.54 Others find that high SOX9
expression correlates with age, female sex, and MSI tumors, espe-
cially MSI-high tumors.59 In contrast, correlation between down-
regulated SOX9 expression and MSI relative to microsatellite
stable tumors has also been described.60 Table 4 lists the studies on
SOX9 in human CRC.

Correlation between SOX9 expression levels and patient sur-
vival is inconsistent.54,55,59 When stratified for American Joint
AJCC Stage
(No. of Patients Analyzed) Reference

)
NS Cancer Genome Atlas Network, 20125

NS Ramalingam et al., 201228

NS Matheu et al., 201253

NS Matheu et al., 201253

II (280)
III (161)

Candy et al., 201354

I/II (97)
III/IV (86)

Lü et al., 200855

I (6)
II (12)
III (5)
IV (1)
NS (3)

Abdel-Samad et al., 201156

I (5)
II (8)
III (2)
IV (1)
NS (1)

Abdel-Samad et al., 201156

NS Lü et al., 200657

I/II (39)
III/IV (38)

Huang et al., 201358

Dukes A (1)
Dukes B (11)
Dukes C (19)

Panza et al., 201359

I (23)
II (340)
III (49)
IV (12)

Andersen et al. , 200960

NS Chen et al. , 200661

rouracil; MSI ¼ microsatellite instable; MSS ¼ microsatellite stabile; NS ¼ not specified; Paired
ing region y-box 9.
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Committee on Cancer stage, SOX9 protein overexpression is asso-
ciated with a lower survival in 5-FUetreated stage III cancers.54

This is not the case for 5-FUeuntreated stage III or stage II
CRC patients,54 suggesting that SOX9 may be a prognostic indi-
cator in patients receiving 5-FU adjuvant chemotherapy. It should
be noted, however, that the study did not adjust for MMR defi-
ciency, which may have both a prognostic value and a predictive
value with regard to 5-FU resistance.106,107

Discussion
It is evident that all the 4 stem cell markers are overexpressed at

the protein and mRNA levels in primary tumors of CRC patients
compared to normal mucosa and that this may have prognostic
significance. The exact mechanisms and functions of the increased
expression of the intestinal stem cell markers remain to be eluci-
dated, as studies are contradictory with respect to the oncogenic or
tumor-suppressive functions. Apparently the proteins play impor-
tant roles in essential signaling pathways, such as Rb, p53, Notch,
and Wnt signaling, in which deregulation of these often are
involved in the carcinogenic process. Most studies identifying and
investigating adult stem cells of the intestines focus on the small
intestine, with little attention paid to the actual colon stem cells.
The evidence of Lgr5 marking both colon and small intestine stem
cells is convincing.18 However, this is less established for the other
3 markers, with Sox9 studies suggesting that the stem cell pop-
ulations of the small intestine and the colon might differ
completely with respect to the Sox9 expression level.27,28 This
could to some extent explain the somewhat different carcinogenic
functions observed in CRC cell lines using small intestinal stem cell
markers. In addition, pooling right-sided and left-sided colon
tumors, and rectum tumors with different mutational profiles in
the same investigations might further add to the diversity of
expression signatures.108

Another potential mechanism to the opposing results could be an
alternating expression along the carcinogenic progression such that
the stem celleassociated pathways or intestinal stem cell proteins are
silenced during certain stages of progression and reexpressed at other
stages. It has also been suggested that a more primitive stem cell
program than the intestinal stem cell signatures might play a role in
the progression of CRC.41

Variants of the different stem cell proteins might also add to the
contradicting results of the intestinal stem cell markers’ implications
in cancer development and progression. Few studies indicate that
variants and mutations of the stem cell genes might be of impor-
tance from a prognostic perspective.5,39,40,53,56 Thus, further studies
on the functional role and clinical significance of these variants and
mutations are needed.

LGR5, MSI1, SOX9, and BMI1 expression correlates to various
clinicopathologic features of primary colorectal tumors. However,
there are some discrepancies between the studies. This could be due
to the relatively rare event of some of the features and the relatively
small numbers of included patients in some of the studies. However,
common to all stem cell markers is that their expression level has
been correlated to more advanced disease stage. Furthermore,
tumors with MMR deficiency have low expression levels of LGR5
and SOX9, which is in accordance with the favorable prognosis of
patients with MMR defect tumors106,107 and the poor prognosis
associated with an increased LGR5 or SOX9 expression in some
studies.17,60

A hallmark of cancer stem cells is their potential resistance to
chemotherapeutic drugs. Interestingly, low expression of LGR5 in
primary tumors from CRC patients correlates with improved
response to 5-FUebased chemotherapy, and SOX9 overexpression
correlates with short survival in stage III 5-FUetreated CRC
patients, suggesting that these markers might be relevant for pre-
dicting chemotherapy resistance.33,54 However, larger patient
studies are needed to clarify these indications. Another strategy in
trying to improve the prognostic and predictive value could be to
combine several of the stem cell markers in a panel rather than using
only one stem cell marker, as is seen in other studies focusing on
other genes and proteins.48,109

Furthermore, adjusting for known predictive and prognostic
factors, such as MMR deficiency, are necessary to further clarify the
significance of the stem markers as prognostic and predictive
biomarkers.

The expression of the 4 stem cell markers has been described as
heterogeneous within tumor tissue. Interestingly, the location of
LGR5 expressing tumor cells within the tumor might be relevant in
relation to disease stage.31 Thus, it can be speculated that increased
expression of stem cellelike cells at the invasive front of the tumor
might be associated with a more aggressive cancer phenotype.
Several studies have thus implied a role of the stem cell markers in
metastasis. However, a heterogeneous expression pattern potentially
compromises the use of tissue microarrays, an emerging technique
for large-scale patient studies. This technique has been used by
several of the studies. If the intestinal stem cell markers are intro-
duced to routine settings, a low-cost, simple analysis using full
slides—eg, immunohistochemistry with clearly defined cutoff
values—would be preferred to tissue microarray. Another challenge
is the current lack of proper antibodies targeting LGR5, which
precludes a proper investigation of LGR5 in human tissue.85

In conclusion, the intestinal stem cell markers LGR5, BMI1,
MSI1, and SOX9 are overexpressed in human CRC. The high
expression of these stem cell markers might have a prognostic sig-
nificance and may be associated with chemotherapy resistance.
However, further extensive studies are needed to elucidate whether
these intestinal stem cell markers can be used as predictive and
prognostic biomarkers in a clinical setting.
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