721 research outputs found

    Kinetic model of II-VI(001) semiconductor surfaces: Growth rates in atomic layer epitaxy

    Get PDF
    We present a zinc-blende lattice gas model of II-VI(001) surfaces, which is investigated by means of Kinetic Monte Carlo (KMC) simulations. Anisotropic effective interactions between surface metal atoms allow for the description of, e.g., the sublimation of CdTe(001), including the reconstruction of Cd-terminated surfaces and its dependence on the substrate temperature T. Our model also includes Te-dimerization and the potential presence of excess Te in a reservoir of weakly bound atoms at the surface. We study the self-regulation of atomic layer epitaxy (ALE) and demonstrate how the interplay of the reservoir occupation with the surface kinetics results in two different regimes: at high T the growth rate is limited to 0.5 layers per ALE cycle, whereas at low enough T each cycle adds a complete layer of CdTe. The transition between the two regimes occurs at a characteristic temperature and its dependence on external parameters is studied. Comparing the temperature dependence of the ALE growth rate in our model with experimental results for CdTe we find qualitative agreement.Comment: 9 pages (REVTeX), 8 figures (EPS). Content revised, references added, typos correcte

    A superconducting-nanowire 3-terminal electronic device

    Full text link
    In existing superconducting electronic systems, Josephson junctions play a central role in processing and transmitting small-amplitude electrical signals. However, Josephson-junction-based devices have a number of limitations including: (1) sensitivity to magnetic fields, (2) limited gain, (3) inability to drive large impedances, and (4) difficulty in controlling the junction critical current (which depends sensitively on sub-Angstrom-scale thickness variation of the tunneling barrier). Here we present a nanowire-based superconducting electronic device, which we call the nanocryotron (nTron), that does not rely on Josephson junctions and can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nTron is a 3-terminal, T-shaped planar device with a gain of ~20 that is capable of driving impedances of more than 100 k{\Omega}, and operates in typical ambient magnetic fields at temperatures of 4.2K. The device uses a localized, Joule-heated hotspot formed in the gate to modulate current flow in a perpendicular superconducting channel. We have characterized the nTron, matched it to a theoretical framework, and applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nTron has immediate applications in classical and quantum communications, photon sensing and astronomy, and its performance characteristics make it compatible with existing superconducting technologies. Furthermore, because the hotspot effect occurs in all known superconductors, we expect the design to be extensible to other materials, providing a path to digital logic, switching, and amplification in high-temperature superconductors

    A lattice gas model of II-VI(001) semiconductor surfaces

    Get PDF
    We introduce an anisotropic two-dimensional lattice gas model of metal terminated II-IV(001) seminconductor surfaces. Important properties of this class of materials are represented by effective NN and NNN interactions, which result in the competition of two vacancy structures on the surface. We demonstrate that the experimentally observed c(2x2)-(2x1) transition of the CdTe(001) surface can be understood as a phase transition in thermal equilbrium. The model is studied by means of transfer matrix and Monte Carlo techniques. The analysis shows that the small energy difference of the competing reconstructions determines to a large extent the nature of the different phases. Possible implications for further experimental research are discussed.Comment: 7 pages, 2 figure

    Intramolecular diffusive motion in alkane monolayers studied by high-resolution quasielastic neutron scattering and molecular dynamics simulations

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevLett.92.046103 DOI:10.1103/PhysRevLett.92.046103Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of ~0.1-4 ns. We present evidence that these relatively slow motions are observable by high-energy-resolution quasielastic neutron scattering (QNS) thus demonstrating QNS as a technique, complementary to nuclear magnetic resonance, for studying conformational dynamics on a nanosecond time scale in molecular monolayers.This work was supported by the NSF under Grants No. DMR-9802476 and No. DMR-0109057, by the Chilean government under FONDECYT Grant No. 1010548, and by the U.S. Department of Energy through Grant No. DE-FG02-01ER45912. The neutron scattering facilities in this work are supported in part by the National Science Foundation under Agreement No. DMR-0086210

    Ideas and perspectives : Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective

    Get PDF
    The authors thank Marialaura Bancheri, Michele Bottazzi, Roman Cibulka, Massimo Esposito, Alba Gallo, Cesar D. Jimenez-Rodriguez, Angelika Kuebert, Ruth Magh, Stefania Mambelli, Alessia Nannoni, Paolo Nasta, Vladimir Rosko, Andrea RĂŒcker, Noelia Saavedra Berlanga, Martin Ć anda, and Anna Scaini for their contributions during the discussion at the workshop “Isotope-based studies of water partitioning and plant–soil interactions in forested and agricultural environments”. The authors also thank “Villa Montepaldi” and the University of Florence for the access to the workshop location, and the municipality of San Casciano in Val di Pesa for logistical support. The authors thank the Department of Innovation, Research and University of the Autonomous Province of Bozen/Bolzano for covering the Open Access publication costs. Last, but not least, the authors wish to thank Matthias Sprenger, Stephen Good, and J. RenĂ©e Brooks, as well as the Editor David R. Bowling, whose constructive reviews greatly improved this manuscript.Peer reviewedPublisher PD

    Cardiovascular reactivity in a simulated job interview: the role of gender role self-concept

    Get PDF
    This study investigated the relation of gender role self-concept (G-SC) to cardiovascular and emotional reactions to an ecologically relevant stressor in a sample of graduating male and female university students. Thirty-seven men and 37 women completed the Personal Attribute Questionnaire and worked on four tasks designed to reflect common features of a job interview. Blood pressure and heart rate were measured at baseline, during, and after each task; subjective stress was measured at baseline and after each task. Subjective and objective stress scores were averaged across tasks and analyzed by sex and G-SC (i.e., instrumentality, expressiveness). Results indicated that women as a group demonstrated greater emotional reactivity, but did not differ in their physiological reactions when compared to men. Regardless of sex, participants’ instrumentality scores contributed significantly to the variation in subjective stress response: those scoring high on instrumentality reported less stress, but evidenced greater blood pressure reactivity than those scoring low on instrumentality. These results suggest that gender roles, particularly an instrumental self-concept, may play an important role in both subjective and objective reactions to an ecologically relevant stressor

    Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.

    Get PDF
    Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer
    • 

    corecore