279 research outputs found

    Segmental relaxation in semicrystalline polymers: a mean field model for the distribution of relaxation times in confined regimes

    Get PDF
    The effect of confinement in the segmental relaxation of polymers is considered. On the basis of a thermodynamic model we discuss the emerging relevance of the fast degrees of freedom in stimulating the much slower segmental relaxation, as an effect of the constraints at the walls of the amorphous regions. In the case that confinement is due to the presence of crystalline domains, a quasi-poissonian distribution of local constraining conditions is derived as a result of thermodynamic equilibrium. This implies that the average free energy barrier ΔF\Delta F for conformational rearrangement is of the same order of the dispersion of the barrier heights, δ(ΔF)\delta (\Delta F), around ΔF\Delta F. As an example, we apply the results to the analysis of the α\alpha-relaxation as observed by dielectric broad band spectroscopy in semicrystalline poly(ethylene terephthalate) cold-crystallized from either an isotropic or an oriented glass. It is found that in the latter case the regions of cooperative rearrangement are significantly larger than in the former.Comment: 10 pages, 4 figures .ep

    Broadband dielectric spectroscopy of nanocomposites based on PVDF and expanded graphite

    No full text
    International audienceNanocomposites based on poly (vinylidene fluoride) (PVDF) and expanded graphite (EG) were prepared by non-solvent precipitation from solution with different EG concentrations. Films were obtained by compression molding and their structural and dielectric properties studied. From Wide Angle X-ray Scattering (WAXS) experiments, it can be assessed that for all EG concentrations the -crystalline phase of PVDF is the predominant crystalline form. However, for composites with high nanoadditive content, higher than 3 wt.%, the -crystalline phase is also detected. Dielectric spectroscopy results showed that the nanocomposites present both high dielectric constant and electrical conductivity at low percolation threshold

    Broadband ac conductivity of conductor-polymer composites

    Get PDF
    The electrical conductivity of a composite model system formed by highly structured carbon black (CB) filled, within an amorphous polymer, poly(ethylene terephtalate) composite is studied. The dc conductivity as a function of CB content follows a scaling law of the type σ∝(p−pc)t yielding for the percolation concentration, pc=0.011 and for the exponent, t=2.17. The analysis of the temperature dependence of the conductivity suggests that for temperatures larger than 45 K, conduction can be ascribed to thermal fluctuation induced tunneling of the charge carriers through the insulating layer of polymer separating two CB aggregates. At lower temperatures, conductivity becomes temperature independent, which is typical of conventional tunneling. The frequency dependence of the conductivity is also studied between dc and 109 Hz. By the introduction of a shift factor ap, a procedure for the construction of a master curve based on a “time-length equivalence principle” is proposed. Finally, a model is introduced to describe the frequency dependence of the conductivity of CB-filled composites based on the behavior of charge carriers placed in a fractal object

    The building stone of the Roman city of Lixus (NW Morocco) : provenance, petrography and petrophysical characterization

    Get PDF
    Characterization of building material is a key tool to assess deterioration processes and improve potential restoration works of archaeological sites. The aim of this paper is to identify and characterize the building stone used in the construction of the Phoenician-Roman city of Lixus (Larache, Morocco) by means of petrographic and petrophysical technics. Based on the visual analysis of the monuments, three major building stones (i.e., lithotypes) have been identified: (1) Oligocene sandstones, (2) Quaternary sandstones, and (3) Quaternary conglomerates. Based on the analysis of the regional geology and exploitation marks, these three lithotypes have been identified to crop out in the surroundings of Lixus and the quarries, presumably Roman in origin, recognized. The Oligocene sandstone is the primary building stone in Lixus as form and crop out extensively in the Tchemmis hill, at top of which the city is settled. The Quaternary sandstones and conglomerates, which represent nearshore deposits and eolianites, are less abundant as building rocks in Lixus and crop out along the Atlantic coast where form part pf the cliffs close to Larache. Petrographic results indicate that lithotypes differ notably in grain size, ratio of detrital to allochemical components, and the configuration of their porous system. Mechanical analysis show that the Oligocene sandstones are more resistant to compression than the Quaternary sandstones and conglomerates, the latter exhibiting low compressive strength. The Oligocene sandstones, which display scarce porosity and permeability, show a hydric behaviour characterized by a very low degree of absorbing and desorbing water, likely resulting from a poor connectivity of the pore network. Contrary to later lithotype, the Quaternary sandstones and conglomerates, which exhibit very high porosity and permeability, display a hydric behaviour characterized by high degree of both absorbing and desorbing water. This behaviour is attributed to both the low degree of cementation and excellent connectivity of the porous network of the lithotype typical of coastal deposists. Finally, the accelerated artificial aging test they do not show a significant weight loss after twelve cycles of salt crystallization, indicating that the three lithotypes are not vulnerable to sodium sulphate attacks. Results of this study indicate that the good state of conservation of the building rocks of Lixus is linked to intrinsic factors as mineralogy and petrophysical characteristics together with the favourable effect of the climatic condition of the study area

    Spinodal-assisted crystallization in polymer melts

    Get PDF
    Recent experiments in some polymer melts quenched below the melting temperature have reported spinodal kinetics in small-angle x-ray scattering before the emergence of a crystalline structure. To explain these observations we propose that the coupling between density and chain conformation induces a liquid-liquid binodal within the equilibrium liquid-crystalline solid coexistence region. A simple phenomenological theory is developed to illustrate this idea, and several experimentally testable consequences are discussed. Shear is shown to enhance the kinetic role of the hidden binodal

    Transcriptomic differences in MSA clinical variants

    Get PDF
    Background: Multiple system atrophy (MSA) is a rare oligodendroglial synucleinopathy of unknown etiopathogenesis including two major clinical variants with predominant parkinsonism (MSA-P) or cerebellar dysfunction (MSA-C). Objective: To identify novel disease mechanisms we performed a blood transcriptomic study investigating differential gene expression changes and biological process alterations in MSA and its clinical subtypes. Methods: We compared the transcriptome from rigorously gender and age-balanced groups of 10 probable MSA-P, 10 probable MSA-C cases, 10 controls from the Catalan MSA Registry (CMSAR), and 10 Parkinson Disease (PD) patients. Results: Gene set enrichment analyses showed prominent positive enrichment in processes related to immunity and inflammation in all groups, and a negative enrichment in cell differentiation and development of the nervous system in both MSA-P and PD, in contrast to protein translation and processing in MSA-C. Gene set enrichment analysis using expression patterns in different brain regions as a reference also showed distinct results between the different synucleinopathies. Conclusions: In line with the two major phenotypes described in the clinic, our data suggest that gene expression and biological processes might be differentially affected in MSA-P and MSA-C. Future studies using larger sample sizes are warranted to confirm these results

    Quantitative trait locus analysis identifies Gabra3 as a regulator of behavioral despair in mice

    Get PDF
    The Tail Suspension Test (TST), which measures behavioral despair, is widely used as an animal model of human depressive disorders and antidepressant efficacy. In order to identify novel genes involved in the regulation of TST performance, we crossed an inbred strain exhibiting low immobility in the TST (RIIIS/J) with two high-immobility strains (C57BL/6J and NZB/BlNJ) to create two distinct F2 hybrid populations. All F2 offspring (n = 655) were genotyped at high density with a panel of SNP markers. Whole-genome interval mapping of the F2 populations identified statistically significant quantitative trait loci (QTLs) on mouse chromosomes (MMU) 4, 6, and X. Microarray analysis of hippocampal gene expression in the three parental strains was used to identify potential candidate genes within the MMUX QTLs identified in the NZB/BlNJ × RIIIS/J cross. Expression of Gabra3, which encodes the GABAA receptor α3 subunit, was robust in the hippocampus of B6 and RIIIS mice but absent from NZB hippocampal tissue. To verify the role of Gabra3 in regulating TST behavior in vivo, mice were treated with SB-205384, a positive modulator of the α3 subunit. SB-205384 significantly reduced TST immobility in B6 mice without affecting general activity, but it had no effect on behavior in NZB mice. This work suggests that GABRA3 regulates a behavioral endophenotype of depression and establishes this gene as a viable new target for the study and treatment of human depression
    corecore