1,462 research outputs found

    Comparison of planted soil infiltration systems for treatment of log yard runoff

    Get PDF
    Treatment of log yard runoff is required to avoid contamination of receiving watercourses. The research aim was to assess if infiltration of log yard runoff through planted soil systems is successful and if different plant species affect the treatment performance at a fieldscale experimental site in Sweden (2005 to 2007). Contaminated runoff from the log yard of a sawmill was infiltrated through soil planted with Alnus glutinosa (L.) Ga¨rtner (common alder), Salix schwerinii3viminalis (willow variety ‘‘Gudrun’’), Lolium perenne (L.) (rye grass), and Phalaris arundinacea (L.) (reed canary grass). The study concluded that there were no treatment differences when comparing the four different plants with each other, and there also were no differences between the tree and the grass species. Furthermore, the infiltration treatment was effective in reducing total organic carbon (55%) and total phosphorus (45%) concentrations in the runoff, even when the loads on the infiltration system increased from year to year

    Convexity criteria and uniqueness of absolutely minimizing functions

    Get PDF
    We show that absolutely minimizing functions relative to a convex Hamiltonian H:RnRH:\mathbb{R}^n \to \mathbb{R} are uniquely determined by their boundary values under minimal assumptions on H.H. Along the way, we extend the known equivalences between comparison with cones, convexity criteria, and absolutely minimizing properties, to this generality. These results perfect a long development in the uniqueness/existence theory of the archetypal problem of the calculus of variations in L.L^\infty.Comment: 34 page

    A Holder Continuous Nowhere Improvable Function with Derivative Singular Distribution

    Full text link
    We present a class of functions K\mathcal{K} in C0(R)C^0(\R) which is variant of the Knopp class of nowhere differentiable functions. We derive estimates which establish \mathcal{K} \sub C^{0,\al}(\R) for 0<\al<1 but no KKK \in \mathcal{K} is pointwise anywhere improvable to C^{0,\be} for any \be>\al. In particular, all KK's are nowhere differentiable with derivatives singular distributions. K\mathcal{K} furnishes explicit realizations of the functional analytic result of Berezhnoi. Recently, the author and simulteously others laid the foundations of Vector-Valued Calculus of Variations in LL^\infty (Katzourakis), of LL^\infty-Extremal Quasiconformal maps (Capogna and Raich, Katzourakis) and of Optimal Lipschitz Extensions of maps (Sheffield and Smart). The "Euler-Lagrange PDE" of Calculus of Variations in LL^\infty is the nonlinear nondivergence form Aronsson PDE with as special case the \infty-Laplacian. Using K\mathcal{K}, we construct singular solutions for these PDEs. In the scalar case, we partially answered the open C1C^1 regularity problem of Viscosity Solutions to Aronsson's PDE (Katzourakis). In the vector case, the solutions can not be rigorously interpreted by existing PDE theories and justify our new theory of Contact solutions for fully nonlinear systems (Katzourakis). Validity of arguments of our new theory and failure of classical approaches both rely on the properties of K\mathcal{K}.Comment: 5 figures, accepted to SeMA Journal (2012), to appea

    Bulk-sensitive Photoemission of Mn5Si3

    Full text link
    We have carried out a bulk-sensitive high-resolution photoemission experiment on Mn5Si3. The measurements are performed for both core level and valence band states. The Mn core level spectra are deconvoluted into two components corresponding to different crystallographic sites. The asymmetry of each component is of noticeable magnitude. In contrast, the Si 2p spectrum shows a simple Lorentzian shape with low asymmetry. The peaks of the valence band spectrum correspond well to the peak positions predicted by the former band calculation.Comment: To be published in: Solid State Communication

    Nonlinear Dynamics of Aeolian Sand Ripples

    Full text link
    We study the initial instability of flat sand surface and further nonlinear dynamics of wind ripples. The proposed continuous model of ripple formation allowed us to simulate the development of a typical asymmetric ripple shape and the evolution of sand ripple pattern. We suggest that this evolution occurs via ripple merger preceded by several soliton-like interaction of ripples.Comment: 6 pages, 3 figures, corrected 2 typo

    Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump

    Get PDF
    The small size (58 residues) and simple structure of the B domain of staphylococcal protein A (BdpA) have led to this domain being a paradigm for theoretical studies of folding. Experimental studies of the folding of BdpA have been limited by the rapidity of its folding kinetics. We report the folding kinetics of a fluorescent mutant of BdpA (G29A F13W), named F13W*, using nanosecond laser-induced temperature jump experiments. Automation of the apparatus has permitted large data sets to be acquired that provide excellent signal-to-noise ratio over a wide range of experimental conditions. By measuring the temperature and denaturant dependence of equilibrium and kinetic data for F13W*, we show that thermodynamic modeling of multidimensional equilibrium and kinetic surfaces is a robust method that allows reliable extrapolation of rate constants to regions of the folding landscape not directly accessible experimentally. The results reveal that F13W* is the fastest-folding protein of its size studied to date, with a maximum folding rate constant at 0 M guanidinium chloride and 45°C of 249,000 (s-1). Assuming the single-exponential kinetics represent barrier-limited folding, these data limit the value for the preexponential factor for folding of this protein to at least ≈2 x 10(6) s(-1)

    First search for gravitational waves from the youngest known neutron star

    Get PDF
    We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.7–1.2) × 10^(−24) on the intrinsic gravitational-wave strain, (0.4–4) × 10^(−4) on the equatorial ellipticity of the neutron star, and 0.005–0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore