2,583 research outputs found
Kinetics of glucose oxidase catalyzed electron transfer mediated by sulfur and selenium compounds
AbstractUnusually high electron transfer rates in Aspergillus niger glucose oxidase catalyzed oxidation of glucose using 5,6:11,12-Bis(dithio)tetracene (TTT), 1,2-dimethyltetraselenafulvalene (DMTSF) and tetrathiafulvalene (TTF) were observed. At pH 7.0 oxidation rate constants (TN/Km) in the range from 1.0 · 107 to 8.7 · 107 M · s−1 were deduced from experimental data. One of the investigated mediators, DMTSF, has been used for electrocatalytical glucose oxidation on graphite at a potential of 0.3 V vs. a standard calomel electrode (SCE). The prepared bioelectrodes have a sensitivity of 1.3 μA/(cm2 · mM), a pH optimum at 6.5-7.0, and a linear range which covers the relevant range for monitoring physiological levels of glucose. The bioelectrodes are stable for more than one month
Engineered Extracellular Vesicles Loaded With miR-124 Attenuate Cocaine-Mediated Activation of Microglia
MicroRNA-124 (miR-124), a brain-enriched microRNA, is known to regulate microglial quiescence. Psychostimulants such as cocaine have been shown to activate microglia by downregulating miR-124, leading, in turn, to neuroinflammation. We thus rationalized that restoring the levels of miR-124 could function as a potential therapeutic approach for cocaine-mediated neuroinflammation. Delivering miRNA based drugs in the brain that are effective and less invasive, however, remains a major challenge in the field. Herein we engineered extracellular vesicles (EVs) and loaded them with miR-124 for delivery in the brain. Approach involved co-transfection of mouse dendritic cells with Dicer siRNA and RVG-Lamp2b plasmid to deplete endogenous miRNAs and for targeting the CNS, respectively. Mouse primary microglia (mPm) were treated with purified engineered EVs loaded with either Cy5-miR-124 or Cy5-scrambled miRNA oligos in the presence or absence of cocaine followed by assessing EV uptake and microglial activation. In vivo studies involved pretreating mice intranasally with engineered EVs followed by cocaine injection (20 mg/kg, i.p.). mPm exposed to EV-miR-124 exhibited reduced expression of miR-124 targets - TLR4 and STAT3 as well as ERK-1/2 and Iba1. In cocaine administered mice, EV-Cy5-miR-124 delivered intranasally were detected in the CNS and significantly reduced the expression of inflammatory markers TLR4, MYD88, STAT3 and NF-kB p65 while also downregulating the microglial activation marker, Iba1. Collectively, these findings suggest that engineered EVs can deliver miR-124 into the CNS, thereby alleviating cocaine-mediated microglial activation. Manipulating EV miRNAs can thus be envisioned as an efficient means for delivery of RNA-based therapeutics to target organs
T-cell subset abnormalities predict progression along the Inflammatory Arthritis disease continuum: implications for management
The presence of a disease continuum in inflammatory arthritis (IA) is a recognised concept, with distinct stages from at-risk stage (presence of anti citrullinated-peptide autoantibody) to diagnosis of rheumatoid arthritis (RA), including therapy-induced remission. Despite T-cell dysregulation being a key feature of RA, there are few reports of T-cell phenotyping along the IA-continuum. We investigated the disturbances of naïve, regulatory and inflammation related cell (IRC) CD4+ T-cell subsets in 705 individuals across the IA-continuum, developing a simple risk-score (summing presence/absence of a risk-associated with a subset) to predict progression from one stage to the next. In 158 at-risk individuals, the 3 subsets had individual association with progression to IA and the risk-score was highly predictive (p < 0.0001). In evolving IA patients, 219/294 developed RA; the risk-score included naïve and/or Treg and predicted progression (p < 0.0001). In 120 untreated RA patients, the risk-score for predicting treatment-induced remission using naïve T-cells had an odds ratio of 15.4 (p < 0.0001). In RA patients in treatment-induced remission, a score using naïve T-cells predicted disease flare (p < 0.0001). Evaluating the risk of progression using naïve CD4+ T-cells was predictive of progression along the whole IA-continuum. This should allow identification of individuals at high-risk of progression, permitting targeted therapy for improved outcomes
Normal values and test–retest variability of stimulated-echo diffusion tensor imaging and fat fraction measurements in the muscle
OBJECTIVES:
To assess the test–retest variability of both diffusion parameters and fat fraction (FF) estimates in normal muscle, and to assess differences in normal values between muscles in the thigh.
METHODS:
29 healthy volunteers (mean age 37 years, range 20–60 years, 17/29 males) completed the study. Magnetic resonance images of the mid-thigh were acquired using a stimulated echo acquisition mode-echoplanar imaging (STEAM-EPI) imaging sequence, to assess diffusion, and 2-point Dixon imaging, to assess FF. Imaging was repeated in 19 participants after a 30 min interval in order to assess test–retest variability of the measurements.
RESULTS:
Intraclass correlation coefficients (ICCs) for test–retest variability were 0.99 [95% confidence interval, (CI): 0.98, 1] for FF, 0.94 (95% CI: 0.84, 0.97) for mean diffusivity and 0.89 (95% CI: 0.74, 0.96) for fractional anisotropy (FA). FF was higher in the hamstrings than the quadriceps by a mean difference of 1.81% (95% CI:1.63, 2.00)%, p < 0.001. Mean diffusivity was significantly lower in the hamstrings than the quadriceps (0.26 (0.13, 0.39) x10- 3 mm2s−1, p < 0.001) whereas fractional anisotropy was significantly higher in the hamstrings relative to the quadriceps with a mean difference of 0.063 (0.05, 0.07), p < 0.001.
CONCLUSIONS:
This study has shown excellent test-retest, variability in MR-based FF and diffusion measurements and demonstrated significant differences in these measures between hamstrings and quadriceps in the healthy thigh.
ADVANCES IN KNOWLEDGE:
Test–retest variability is excellent for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. Inter- and intraobserver variability were excellent for region of interest placement for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. There are significant differences in FF and diffusion measurements between the hamstrings and quadriceps in the normal muscle
Quantum cohomology via vicious and osculating walkers
We relate the counting of rational curves intersecting Schubert varieties of the Grassmannian to the counting of certain non-intersecting lattice paths on the cylinder, so-called vicious and osculating walkers. These lattice paths form exactly solvable statistical mechanics models and are obtained from solutions to the Yang–Baxter equation. The eigenvectors of the transfer matrices of these models yield the idempotents of the Verlinde algebra of the gauged u^(n)k -WZNW model. The latter is known to be closely related to the small quantum cohomology ring of the Grassmannian. We establish further that the partition functions of the vicious and osculating walker model are given in terms of Postnikov’s toric Schur functions and can be interpreted as generating functions for Gromov–Witten invariants. We reveal an underlying quantum group structure in terms of Yang–Baxter algebras and use it to give a generating formula for toric Schur functions in terms of divided difference operators which appear in known representations of the nil-Hecke algebra
Schur Q-functions and degeneracy locus formulas for morphisms with symmetries
We give closed-form formulas for the fundamental classes of degeneracy loci
associated with vector bundle maps given locally by (not necessary square)
matrices which are symmetric (resp. skew-symmetric) w.r.t. the main diagonal.
Our description uses essentially Schur Q-polynomials of a bundle, and is based
on a certain push-forward formula for these polynomials in a Grassmann bundle.Comment: 22 pages, AMSTEX, misprints corrected, exposition improved. to appear
in the Proceedings of Intersection Theory Conference in Bologna, "Progress in
Mathematics", Birkhause
Organization of Multinational Activities and Ownership Structure
We develop a model in which multinational investors decide about the modes of organization, the locations of production, and the markets to be served. Foreign investments are driven by market-seeking and cost-reducing motives. We further assume that investors face costs of control that vary among sectors and increase in distance. The results show that (i) production intensive sectors are more likely to operate a foreign business independent of the investment motive, (ii) that distance may have a non-monotonous effect on the likelihood of horizontal investments, and (iii) that globalization, if understood as reducing distance, leads to more integration
- …