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Small angle X-ray scattering investigation of 
tasar using correlation functions
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A bstract : Due to the immense imporunce of Indian tasar (Amheraca mylitta) as a textile 
fibre, attempts have been made in this work to highlight various macromolecular parameter of air 
dried tasar (T )̂ and heat treated tasar ( T u s i n g  small angle X-ray scattering (SAXS), treating the 
samples as densely packed micellar structures by using the theory of Vonk. The analysis of 
SAXS intensities of 7  ̂and 7 ^  samples shows marked deviation from Porod's law indicating 
that the fibre is not an ideal two-phase system but rather is a non-ideal two-phase siruciuie 
characterized by continuous electron density variation at the phase boundaries over a distance 
known as the width of the transition layer. The widih/thinkness of the transition region was 
found by employing Vonk and Ruland methods. The use of correlation functions introduced by 
Debye and Bueche is considered as the most general approach for the analysis of SAXS dau. Hehoe 
one- and three-dimensional correlation functions have been used to obtain parameters like D, the 
average probable distance between dense panicles transverse to the layers; SiV the specific inner 
surface; 0]and the volume fractions of matter and void respeebvely; and the transversal 
lengths; f,., the range of inhomogeneity; 1̂ the length of coherence; the characteristic number 
and 2E/D, the volume fraction of transition layer.

Keywords : Non-ideal two-phase system, thickness of transition layer, correlation function, 
usar fibre, small angle X-ray scattering.

PACS Noa. : 78.70.Ck, 42,81.Cn

1. In tro d u c tio n

The small angle X-ray scattering (SAXS) technique is being extensively used in studying 
natural fibres such as silk, sisal, jute and synthetic fibres like nylon, rayon and various 
other polymers. According to Porod’s law [1], the scattered X-ray intensity at the tail end of 
the SAXS curve decreases in proportions to for ideal two-phase structures having sharply 
defined phase boundaries, where "s' is the radial coordinate in reciprocal space. 
Investigations [2 ,3] of SAXS intensity paiiem from natural and artificial fibres show a 
remarkable deviation from the Porod’s law i.e. the intensity in the tail end of the SAXS 
curve is observed to decrease in proportion to s '^  rather than s . This deviation has been 
explained by many^workers and ultimately Ruland [4] put forward a novel method for
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explaining the deviation from Porod’s law in terms of a non-ideal two-phase model which is 
taken as a system characterized by continuous electron density variation on the phase 
boundaries between matter and void phases in the interior of the scatterer.

In the non-ideal two-phase system the region over which the electron density 
variation takes place is known as width of transition layer E. As tasar is a macromolecular 
system, being proteinous in nature, a small angle X-ray study has been undertaken to 
determine some of the macromolecular parameters associated with these fibres following the 
procedure of Heyn [5,6].

2 . Sample and its importance

Tasar silk was obtained from the cocoon of tasar by the improved tasar cooking technique
[7]. The sample under investigation was collected from the Central Silk Research and 
Training Centre, Bangriposi, Mayurbhanj, Orissa, India. The sample was dewaxed by usmg 
the process reported by Radio et al [8] and the dewaxed tasar silk Fibre has an amino acid 
composition of various fibroins of about 100%, after all other constituents being separated 
out.

3 . Experim ental

The SAXS data were collected by means of a compact Kratky camera ‘Anton Paar K G A 
-8054 GRAZ AUSTRIA-EUROPA’ using a ‘Phillips’ PW 1729 X-ray Genefbtor having a 
copper target operated at 40 KV ad 30 mA. The entrance slit and counter slit width-of the 
camera were adjusted at 150 pm and 375 pm respectively. The X-ray after passing through 
nickel filter was used for irradiating the samples. The intensity data for the air dried sample 
of tasar (hence forward named as and heat treated sample of tasar 60‘’C (hence forward 
named as T^) were collected as described below. The samples were inserted into two Mark 
Capillary tubes of diameter 0.7 mm each for collecting the intensity data. The capillary tube 
was aligned so as to make its length parallel to the length of the primary beam thereby 
making the fibres parallel to primary beam. A SAXS pattern of the sample was also 
recorded mounting it perpendicular to the beam. Filtered X-ray Cuka (A. = 1.54 A) is usually 
used as used in powder method in X-ray crystallography [9,10] considering it to be almost 
monochromatised. Radiation was allowed to fall on the samples. The body of the compact 
camera contains a tightly sealed evacuated space which encases all the construction devices, 
except the scattered intensity recording counter device. A proportional counter was used to 
record the scattered intensity. The incident X-rays enter the evacuated space through a
0.25 mm thick Beryllium Window from the front side and the scattered X-rays emerge out 
through a similar window at the opposite end. Due to this design, the radiation path 
between the two windows runs through a vacuum of about 0.5 torr, thus avoiding parasitic 
scattering by air molecules. The scattered radiation crosses the Beryllium Window through 
different lengths at different positions depending on the scattering angle, so that variation in 
the absorption by the window would cause errors in the absolute scattering intensities. But 
practically errors due to this effect are below 0.5% and hence can be regarded as negligible.
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The distance from the sample to the counter slit was 20 cm and the temperature was 
maintained at 22.S°C by the help of an air conditioner during X-ray intensity data collection 
for the samples T„ and feo-

4 .  T heory

For a non-ideal two-phase system having continuous electron density variation at the phase 
boundary. Vonk [11] established the relation between the amplitude *F’ expressed in 
absolute units of scattered X-ray at non-zero angle to the deviation rf of the electron density 
from the mean value as

Tj (r) .  J F (s) exp (2m rs )dv, = TfF (s) (1)

where r  is a vector in real space with coordinates x, y, z; s is a vector in reciprocal or 
Fourier space with coordinates u, v, w; dv, is a volume element given by dudvdw and Tfis 
an operator indicating Fourier transformation. The domain of integration in reciprocal space 
is carried out over the samll angle X-ray scattering intensities whereas in real space, it is 
carried out for the irradiated volume of the sample. Differentiation of rj (r) with x, y, z and 
application of Parseval's theorem [2,3] leads to the following relations.

oo op

16n̂ J s*I is)ds = J IgradTj^ I dv,
o 0

oo 9

4;r i s l̂ (s)ds -  j rj^dv.

(2)

(3)

where i s^I {s)ds is usually called the desmeared invariant The intensities obtained are not 
o

in absolute units, hence the ratio of the relations (2) and (3) gives a very useful parameter
OO

JjV(5)dj
*  = .  4 ^  ^ ----------

is* /(j)d s
0

oo

7 is)ds
6 n OO

Is  7

(4)

(s)ds

where /  (s) is die smeared intensity, in arbitrary unit. The quantity R is a useful parameter 
for the characterization of various structures. In an ideal two-jdiase structure the electron 
density gradient at the phase boundary is infinity, as a result of which R goes to infinity. If 
R becomes finite, the electron density changes from one phase to the other continuously
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over a transition layer of width E. In other words if R is finite, corrugation at the phase 
boundary exists. Less the value of R more is the comigaiion. Eq. (4), when expressed in 
terms of x, Misra ei al [2.3] reduces to

3 oR =

oo

{X)dx

I r

(5)

ix)dx

The quantity 'x' used above represents the position coordinate of the scattered intensity |from 
the centre of the primary beam. It is related to the magnitude of the reciprocal vector i^and 
the scattering angle 26 by the relation

26 X
i  = "^  = as 26 = xta.

where u is the distance between the sample and the plane of registration of the scattered ray 
(i.e. sample counter distance) and x is the vertical height of recording the scattered X-rays 
from the centre of the X-ray beam.rThe integral J x /  (x)dx is called smeared invariant Q. For a two-phase system, 

0

Debye and Bueche [12] and Porod [1] have developed theories to prove that the smeared 
invariant for a scattering curve is independent of the shape and size of the particles 
responsible for scattering. On the other hand, it depends upon the scattering strength of the 
system which in turn depends on the square of electron density deviation from the mean

value. The integral L t (x)dx is the integrated smeared scattered energy.

The method for deriving the three-dimensional correlation function C(r) from the 
smear intensities, was developed by Mering and Tchoubar [13] and expressed in terms of x 
by Misra et al [2,3] as

I rX I (x) 7o {27trx/Ka)dx
C (r) = oo

jx T
(6)

1 {x)dx

The significance of correlation functions (three- and one-dimensional) can be visualised as 
follows : Take variable measuring rod and move it in all possible directions for three 
dimensional correlation function and in one direction perpendicular to the layers. Tlie 
product of deviation of electron density from the mean value will be positive and negative
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fol different locations depending whether both the ends fall in same opposite phases 
respectively [14,15].

In case of single particle (i.e. for dilute system), C (r) decreases from one to zero as 
r-fae and for other densely packed systems as in our case it oscillates ultimately going to 
zero. So in such points of 3-dimensional and 1-dimensional correlation functions the first 
and next consecutive peaks corresponds to consecutive crystalline region.

For a non-ideal two phase structure having continuously varying electron density of 
width E, the value of E can be calculated from C (r) of the sample normalised to unity at 
the origin in real space. The equation for calculating E, known as the width of the transition 
layer, was developed by Vonk [11] and is given by the equation

4 ^
^  R  ̂ dr  ' r  = £,. (7)

To calculate £, it is necessary to compute the values of C (r) for various values of r real 
space.

For a layer structure, Vonk and Kortleve [IS] have made use of one-dimensional 
correlation function Ci{Y). The expression for C\(Y) as given by Mering and Tchoubar [13] 
and expressed in the terms of x, leads to

I r (x) [Jo (z) -  iJ\ (z)]dx

CiOO oo

Jjt /  (x)dx 
o

(8)

where z = liocylXa. As predicted by Vonk [1 1], the position of the first subsidiary maxima 
in the one-dimensional correlation function C\(X), give the value of the probable distance 
between dense particles D. transverse to the layers. The parameter D is the repeat distance 
between matter to matter or void to void transverse to layers as per the significance of Ci(K) 
already mentioned. So the relation

(dCJJO)
dy h

1
> E  ~ D 7t?><tT

m

(9 )

derived by Vonk (11), the value of can be computed, where dJj is the electron
<rj‘>

density difference between two neighbouring phases. For a layer structure, the qiecific inner 
surface defined as the phase boundary per unit vtrfume of the dispersed phase is given by 
Vonk [1 1 ] as

S
V

2
D

(10)
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For a non-ideal two-phase system the relation

= (0102- 6^,) (11)

is valid as shown by Vonk [11]. In the above relation ^  and dtz are the volume fractions of 
the two phases matter and void respectively. For this calculation, the phase boundary is 
chosen at the middle of the transition layo*. As the sum of volume fractions of the two 
phases is unity, the values of and t^canbe  detennined by using eq. (11).

Following Porod [1]. the distance statistics can also be used for calculation of 
transversal lengths which are as follows. In an iiregular two phase system, if arrows are 
drawn in all possible directions, the number average of chord lengths through tĥ  two 
phases in all directions are known as transversal lengths denoted by /i and Ji [l^l-

VValues of /j = 40i —

and (12)12 -  402 j

derived by Mitlelbach and Porod [17]. The above quantities give a measure of the size of the 
phases as shown by Mitlelbach and Porod [17] and the range of inhomogeneity I , is

1//,  = l//'i + I/ / 2  . (13)
Hence, the range of inhomogeneity / ,  is analogous to the concept of reduced mass in 
mechancs and represents an average chord length paramer [77].

It contrast to /] and 12 . the number average of the thickness of region of the two 

phases in one dimension transverse to the layers are denoted as d 1 and d 2. The one- 

dimensional average length parameter in this direction is dr The three parameters are related 
as

J_ ^ 1 ^ . 1 (14)

5i = and di =. h (15)

■d, d,

Also the relation

1
2

hold good [16],

As shown by Mittelbach and Porod [17] the distance of heterogeneity i.e. length of 
coherence Ic can be obtained from the following integral

I, = 2Jc (r) dr . (16)

The length of coherence Ig is defined as the mean width of the correlation function 
and also it is weight average of 7̂  [18]. The quantity/;, defined as the characteristic number 
by Porod [1] can be obtained from the equation

L
Ic = 21

(17)
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An increase in the above ratio indicates an increase in anisometiry (or isometry) in the 
scattering system and decrease in/e suggests the decrease in anisometiy {19].

A completely diffoent approach for the estimation of the value of the transition layer 
E, here denoted as En, was suggested by Ruland [4]. The functional relation I  (s -»•») with 
's' at the tail end of the SAXS pattern for a non*ideal two-phase system is given by

T(s »)
Kc f  1 2n^E^ ]
T  I ?  -  ~  J (18)

where c is the constant of proportionality and Eg goes to zero for an ideal two-phase 
system. In terms of x^ariable, the above relation can be written as

i  (z -»«>). jr = ik/2 -  «^c/3 (Ao) e \  (19)

The value of Eg can be calculated from the graph of T (x ' 
Ruland plot.

eo) jc versus x known as

5 . Background correction

During small angle X-ray scattering data collection, it is frequently found that a continuous 
background scattering overlaps the SAXS pattern of the sample. The presence of the 
background scattering introduces error in the calculation of the correlation functions and the 
width of the transition layer. As suggested by Vonk [1 1 ], the correlation function at the 
origin is sensitive to the error in the tail region of the SAXS curve. Therefore, special care 
has been taken to separate the SAXS intensities T (s) from the continuous background 
scattering I t ,  (5). As reported by Kortleve et al [20], the continuons background scattering 
in the SAXS pattern of some samples show an upward trend at large values of 's' after first 
passing through a minimum value in the observed SAXS curve. In such a case, the 
experimentally observed data at the tail end can be fitted to an equation

T ( s ) » a  + bj’ (20)

where a and b are constants and n is an even positive integer. Further, it was shown by 
Konrad and Zachmann [2 1] that U((s) remains constant in the regirni where T (s) contributes 
appreciably. In such a case a constant background intensity corresponding to the minimum 
intensity value in the SAXS pattern of the samples Misra et al [2,3] can be deducted. Both 
of the methods used for background correction gave values of E obtained from Vonk and 
Ruland methods show relatively very small difference. In our calculation, the second method 
of subtracting die minimum intensity as the t»ckground correction has been used with the 
corrected SAXS intensities being used in subsequent calculations.

6 . Calcolation and results
The ioidal four intensity data in the T (x) versus x curve for the case with the fitnes parallel 
to the slits for both samples were fitted to the Gaussiaii curve [22].

T (x -> 0 ) «
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by the least square technique. The values of P obtained were 2859.84 and 3650.12
and the values of q obtained were 211.01 m~̂  and 240.05 m~̂  respectively for T« 

and Tfo- Taking the values of and 4 the scattered intensity curves were ex tr^ la ted  to zero 
angle for both samples. The extrapolated points for and T̂ o are indicated by symbols A 
and O respectively, in Figure 1. It may be noted that the methods of extrapolation has very 
little effect on the relevant'part of the correlation function. Neither the position nor the 
height of the first subsidiary maximum of the one-dimensional correlation function is 
much affected [3]. The two integrals in relation 5 for the i? parameter for both samples >yere 
calculated by numerical integraion applying Simpson’s one-third rule; the values are 1.46 x 
1 0 " ^ and 1.88 x 10'^A~̂  respectively. The small positive values of R for both sam[ 
show that the electron density gradient at the phase boundary is finite, establishing tl^it 
both samples belong to the non-ideal two-phase system. Using eq. (6) the three-dimensior 
correlation function C (r) for both samples were computed for various values of ‘r* and is 
plotted in Figure 2. The slopes of C (r) at different points for both samples were computed 
by the numerical differentiation method using five point central difference formula with a 
constant interval of 1 A. The values of -(4/R)(dc (r)/dr) versus r for both samples are plotted 
in Figure 3. In the same graph, a straight line equidistant from both axes has been drawn 
w d the point of intersection of this line with the two curves give the values of ̂  referred to 
as £„ using relation (7). The values obtained for T, and r«o are given in the Table.

T«»ar Ta ond T«o

Figure L Smeared-out scatiering curve fnagrafied ftom 0.20 cm.
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Figure 2. The curvet showing the 3-dimensionBl conelaiion funoion C(r) against *r' values. 
Both the curves, magnified from 3S0 A.

Toaor % ond I t o
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Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy 
(TEM) photographs of sample have been rqxirted by Bhat and Nadigar [23]. T b ^  
clearly indicate that tasar fibre has a layer structure. To prove the isotrqiic nature of the 
samples, scattering patterns of the sample were taken keeping the sample parallel and 
perpendicular to the primary beam. Both scattering patterns are shown in Figure 7; they are 
nearly symmetrical in nature, suggesting that the sample is isotropic. Therefore the one* 
dimensional correlation function applicable to layer structures [IS] was calculated for both 
samples [13]. Ci (y) versus y is plotted in Figure 4. The values of D, the probable distance 
between dense particles transverse to the layer for both the samples were obtained from the 
position of the first subsidiary maximum in the plots of one-dimensional correlation 
function (Figure 4) are shown in Table 1 . From relation (10), the values of 5/V,\the 
specific inner surface were obtained for Tg and r«o and are displayed in the same table.' 

d C ^
tfyvalues of slopes were calculated at various points for Tg and and were fou

<n^>out to be constant for values of y > £y. Using relation (9) the values of ,[  .j  were
W t)

Figure 4. The cutvei ihowing ihe veluei of m-dimentianal comladgn function Cj(y)
'y' vilm. Beth the cuivei imfniaed from 42S A .

obtained for Tg and T«o are also included in the table. Assumiiig di 4> #2 « 1  and employiitg 
relation (11), the values of di and ^  for and 7«o conqiuted and die valhes are dwwn
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in the taWe. Ftom eq. (12) the tnmsversal lengths 7i and t o  T. and r«> were found out and 
are given ui the tidde.

The avenge values of range of inboroogeneity/r were calculated from eq. (13) for 7*, 
and Tfo and given in the table. Similarly ^2 and 3, have been calculated from relations
(14) and (IS). The length of coherence /«was obtained from eq. (16) for T. and Tta, are 
shown in the table, l^ing relation (17), the characteristic number/^, were obtained for both 
the samples and displayed in the table. The values of 2E/D, the volume fraction of 
transition layer were computed for both samples and are included in the table. Smeared out 
invariant and scattered energy due to both the samples as defined in the text were also 
computed as 9.81,11.36 and 184.69,222.SS respectively.

The Ruland plots of I (x -» «>) versus x~̂  are drawn in Figure 5 for both samples. 
Both plot give straight lines at the tail end of the scattering curve of both samples. The 
slope and y-intercept, were obtained from the Ruland plot as 1.0 and -3.8 for T, and 1.11 
and - 3.4 for 7«o> Using the values of slopes and y-intm:ept, the width of transition layer Eg 
by Ruland method were found out for Tg and T(o and are displayed in the table. The standard

deviation of the intensities a  (V l}  at the tail end of the SAXS curve for both samples 
were calculated and the values obtained are 2.73 x 10~̂  and 2.09 x 10~̂  and are well within 
the

WMT IbaXliM

Figure 5. Theplotofxf

permissible limit of O.S. The line of regression of the intensities at the tail end of the 
SAXS curve for both samples were calcultued and the values obtained are 0.9 for both T* 
hnd Tfo which iue very close to the desired value of 1.0  indicating that the iihien^ty data
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collected for both the samples [2 2] are within pennissibleenor.

7 .  C onclusion

A ctose scrutiny of all the calculation made above shows that tasar silk should be considered 
as non-ideal two-phase system. The above conclusion is obtained from the fact that the 
Ruland plot for an ideal system leads to a straight line without any y-intercept. But the 
Ruland plots of and T^o in Figure S give a negative intercept of -3.8 and -3.4 
respectively confirming the fact that both samples are non-ideal two-phase systems. The 
magnitude of the intercept provides a measure of deviation from the ideal to non-ideal 
system and therefore provides a measure of deviation from the Porod’s law. It can be ruled 
out that for some samples the intercept may be positive leading to two impwtant 
possibilities, (i) the system may not come under two-phase system, (ii) the dimensions of 
the scattering particles may be small enough for using SAXS. \

As mentioned earlier in the theory the non-ideal two-phase structure is one in which 
the surface between the matter and void regions are not smooth, but are corrugated. 
Therefore, between the matter and void phase there occur a region of continuously varying 
electron density and the width of this region is called transition layer. The width of 
transition layer is calculated for T, following Vonk method as £y = 25.88 A and Ruland 
method as Eg = 23.54 A and similarly for ; Ey = 20.88 A and Eg -  19.6 A. The small 
difference between the two values obtained by different approaches for both samples indicate 
the accuracy and the correctness of the data collected and the method of analysis used. All 
the important macromolecular parameters calculated for both samples are shown below in 
tabulated form (Table 1).

Table 1. Various paramcicrs obtained in this work.

Panmclers T. 'ao
D SZl A 506 A
R 1 .46x10'’ A'* 1.88 X 10*’ A*’
S/V 3.84 X 10'’ A'* 3.95 X lO*’ A*‘
Ey 25.88 A 20.88 A

0.17 0.16

0.75 0.78
0.25 0.22

h 781.22 A 789.36 A
h 260.16 A 222.64 A
h 195.51 A 174.26 A

390.61 A 394.68 A
4 13038 A 111.32 A
4 97.75 A 87.13 A
2EID 9% 8 «

k 184 A 192 A
/ . 0.47 0.53
Eg 23.54 A ' 19.6 A
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The lamellar model based upon above findings is shown in Figure 6 and supported 
by TEM photograph [23]. The C (r) versus V  plot shows damped oscillatory behaviour as

tmw % <

Figure 6. Lamellar model, noi to scale.
M, matter, V, void; D, periodicity transverse to the layer, E, width of transition Layer.

found by Misra et al [2] for non-ideal two-phase systems and the same trend is evident for 
both samples. In the model (Figure 6). D has been shown as the distance between the mid 
points of two consecutive matter regions. So the parameter 2EID in percentage, the volume 
fraction of transition layer, E occurs twice. Work on tasar samples is in progress under

MUi 
•artieoi(t)

Figure 7. The curves showing the values of /  (x) vs x keeping the sample to be parallel (A) and 
vertical (B) to the primary beam. Both the curves magniTied from 0.23 cm.

different physical conditions and chemical treatments. In future, we will be in a position to 
provide much more information and esutblish some relation between the results dbtmned 
and the fibre prtqpenies of tasar.
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