6 research outputs found

    Crystal structure of the kinase domain of human protein tyrosine kinase 6 (PTK6) at 2.33 Å resolution

    No full text
    Human Protein tyrosine kinase 6 (PTK6) (EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed in a majority of human breast tumors and breast cancer cell lines, but its expression is low or completely absent in normal mammary glands. In the recent past, several studies have suggested that PTK6 is a potential therapeutic target in cancer. To understand its structural and functional properties, the PTK6 kinase domain (PTK6-KD) gene was cloned, overexpressed in a baculo-insect cell system, purified and crystallized at room temperature. X-ray diffraction data to 2.33 Å resolution was collected on a single PTK6-KD crystal, which belonged to the triclinic space group P1. The Matthews coefficient calculation suggested the presence of four protein molecules per asymmetric unit, with a solvent content of ∼50.The structure has been solved by molecular replacement and crystal structure data submitted to the protein data bank under the accession number 5D7V. This is the first report of apo PTK6-KD structure crystallized in DFG-in and αC-helix-out conformation

    Crystal structure of the kinase domain of human protein tyrosine kinase 6 (PTK6) at 2.33 Å resolution

    No full text
    Human Protein tyrosine kinase 6 (PTK6) (EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed in a majority of human breast tumors and breast cancer cell lines, but its expression is low or completely absent in normal mammary glands. In the recent past, several studies have suggested that PTK6 is a potential therapeutic target in cancer. To understand its structural and functional properties, the PTK6 kinase domain (PTK6-KD) gene was cloned, overexpressed in a baculo-insect cell system, purified and crystallized at room temperature. X-ray diffraction data to 2.33 Å resolution was collected on a single PTK6-KD crystal, which belonged to the triclinic space group P1. The Matthews coefficient calculation suggested the presence of four protein molecules per asymmetric unit, with a solvent content of ∼50.The structure has been solved by molecular replacement and crystal structure data submitted to the protein data bank under the accession number 5D7V. This is the first report of apo PTK6-KD structure crystallized in DFG-in and αC-helix-out conformation

    Co-crystal structures of PTK6: with dasatinib at 2.24 Å, with novel imidazo1,2-apyrazin-8-amine derivative inhibitor at 1.70 Å resolution

    No full text
    Human Protein tyrosine kinase 6 (PTK6)(EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed five-fold or more in human breast tumors and breast cancer cell lines but its expression being low or completely absent from normal mammary gland. There is a recent interest in targeting PTK6-positive breast cancer by developing small molecule inhibitor against PTK6. Novel imidazo1,2-apyrazin-8-amines (IPA) derivative compounds and FDA approved drug, Dasatinib are reported to inhibit PTK6 kinase activity with IC50 in nM range. To understand binding mode of these compounds and key interactions that drive the potency against PTK6, one of the IPA compounds and Dasatinib were chosen to study through X-ray crystallography. The recombinant PTK6 kinase domain was purified and co-crystallized at room temperature by the sitting-drop vapor diffusion method, collected X-ray diffraction data at in-house and resolved co-crystal structure of PTK6-KD with Dasatinib at 2.24 Å and with IPA compound at 1.70 Å resolution. Both these structures are in DFG-in & αC-helix-out conformation with unambiguous electron density for Dasatinib or IPA compound bound at the ATP-binding pocket. Relative difference in potency between Dasatinib and IPA compound is delineated through the additional interactions derived from the occupation of additional pocket by Dasatinib at gatekeeper area. Refined crystallographic coordinates for the kinase domain of PTK6 in complex with IPA compound and Dasatinib have been submitted to Protein Data Bank under the accession number 5DA3 and 5H2U respectively
    corecore