647 research outputs found

    Targeted therapy for advanced salivary gland carcinoma based on molecular profiling: Results from MyPathway, a phase IIa multiple basket study

    Get PDF
    BACKGROUND: Systemic therapy options for salivary cancers are limited. MyPathway (NCT02091141), a phase IIa study, evaluates targeted therapies in non-indicated tumor types with actionable molecular alterations. Here, we present the efficacy and safety results for a subgroup of MyPathway patients with advanced salivary gland cancer (SGC) matched to targeted therapies based on tumor molecular characteristics. PATIENTS AND METHODS: MyPathway is an ongoing, multiple basket, open-label, non-randomized, multi-center study. Patients with advanced SGC received pertuzumab + trastuzumab (HER2 alteration), vismodegib (PTCH-1/SMO mutation), vemurafenib (BRAF V600 mutation), or atezolizumab [high tumor mutational burden (TMB)]. The primary endpoint is the objective response rate (ORR). RESULTS: As of January 15, 2018, 19 patients with SGC were enrolled and treated in MyPathway (15 with HER2 amplification and/or overexpression and one each with a HER2 mutation without amplification or overexpression, PTCH-1 mutation, BRAF mutation, and high TMB). In the 15 patients with HER2 amplification/overexpression (with or without mutations) who were treated with pertuzumab + trastuzumab, 9 had an objective response (1 complete response, 8 partial responses) for an ORR of 60% (9.2 months median response duration). The clinical benefit rate (defined by patients with objective responses or stable disease \u3e4 months) was 67% (10/15), median progression-free survival (PFS) was 8.6 months, and median overall survival was 20.4 months. Stable disease was observed in the patient with a HER2 mutation (pertuzumab + trastuzumab, n = 1/1, PFS 11.0 months), and partial responses in patients with the PTCH-1 mutation (vismodegib, n = 1/1, PFS 14.3 months), BRAF mutation (vemurafenib, n = 1/1, PFS 18.5 months), and high TMB (atezolizumab, n = 1/1, PFS 5.5+ months). No unexpected toxicity occurred. CONCLUSIONS: Overall, 12 of 19 patients (63%) with advanced SGC, treated with chemotherapy-free regimens matched to specific molecular alterations, experienced an objective response. Data from MyPathway suggest that matched targeted therapy for SGC has promising efficacy, supporting molecular profiling in treatment determination

    Grounding knowledge and normative valuation in agent-based action and scientific commitment

    Get PDF
    Philosophical investigation in synthetic biology has focused on the knowledge-seeking questions pursued, the kind of engineering techniques used, and on the ethical impact of the products produced. However, little work has been done to investigate the processes by which these epistemological, metaphysical, and ethical forms of inquiry arise in the course of synthetic biology research. An attempt at this work relying on a particular area of synthetic biology will be the aim of this chapter. I focus on the reengineering of metabolic pathways through the manipulation and construction of small DNA-based devices and systems synthetic biology. Rather than focusing on the engineered products or ethical principles that result, I will investigate the processes by which these arise. As such, the attention will be directed to the activities of practitioners, their manipulation of tools, and the use they make of techniques to construct new metabolic devices. Using a science-in-practice approach, I investigate problems at the intersection of science, philosophy of science, and sociology of science. I consider how practitioners within this area of synthetic biology reconfigure biological understanding and ethical categories through active modelling and manipulation of known functional parts, biological pathways for use in the design of microbial machines to solve problems in medicine, technology, and the environment. We might describe this kind of problem-solving as relying on what Helen Longino referred to as “social cognition” or the type of scientific work done within what Hasok Chang calls “systems of practice”. My aim in this chapter will be to investigate the relationship that holds between systems of practice within metabolic engineering research and social cognition. I will attempt to show how knowledge and normative valuation are generated from this particular network of practitioners. In doing so, I suggest that the social nature of scientific inquiry is ineliminable to both knowledge acquisition and ethical evaluations

    Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study.

    Get PDF
    BACKGROUND: Therapies targeting HER2 have improved clinical outcomes in HER2-positive breast and gastric cancers, and are emerging as potential treatments for HER2-positive metastatic colorectal cancer. MyPathway evaluates the activity of targeted therapies in non-indicated tumour types with potentially predictive molecular alterations. We aimed to assess the activity of pertuzumab and trastuzumab in patients with HER2-amplified metastatic colorectal cancer. METHODS: MyPathway is an ongoing, phase 2a, multiple basket study. Patients in this subset analysis were aged 18 years or older and had treatment-refractory, histologically confirmed HER2-amplified metastatic colorectal cancer with measurable or evaluable disease and an Eastern Cooperative Oncology Group performance status score of 2 or less, enrolled from 25 hospitals or clinics in 16 states of the USA. Patients received pertuzumab (840 mg loading dose, then 420 mg every 3 weeks, intravenously) and trastuzumab (8 mg/kg loading dose, then 6 mg/kg every 3 weeks, intravenously). The primary endpoint was the proportion of patients who achieved an objective response based on investigator-reported tumour responses. Analyses were done per protocol. This ongoing trial is registered with ClinicalTrials.gov, number NCT02091141. FINDINGS: Between Oct 20, 2014, and June 22, 2017, 57 patients with HER2-amplified metastatic colorectal cancer were enrolled in the MyPathway study and deemed eligible for inclusionin this cohort analysis. Among these 57 evaluable patients, as of Aug 1, 2017, one (2%) patient had a complete response and 17 (30%) had partial responses; thus overall 18 of 57 patients achieved an objective response (32%, 95% CI 20-45). The most common treatment-emergent adverse events were diarrhoea (19 [33%] of 57 patients), fatigue (18 [32%] patients), and nausea (17 [30%] patients). Grade 3-4 treatment-emergent adverse events were recorded in 21 (37%) of 57 patients, most commonly hypokalaemia and abdominal pain (each three [5%] patients). Serious treatment-emergent adverse events were reported in ten (18%) patients and two (4%) of these adverse events (ie, chills and infusion-related reaction) were considered treatment related. There were no treatment-related deaths. INTERPRETATION: Dual HER2-targeted therapy with pertuzumab plus trastuzumab is well tolerated and could represent a therapeutic opportunity for patients with heavily pretreated, HER2-amplified metastatic colorectal cancer. FUNDING: F Hoffmann-La Roche/Genentech

    Accuracy in mineral identification: image spectral and spatial resolutions and mineral spectral properties

    Get PDF
    Problems related to airborne hyperspectral image data are reviewed and the requirements for data analysis applied to mineralogical (rocks and soils) interpretation are discussed. The variability of mineral spectral features, including absorption position, shape and depth is considered and interpreted as due to chemical composition, grain size effects and mineral association. It is also shown how this variability can be related to well defined geologic processes. The influence of sensor noise and diffuse atmospheric radiance in classification accuracy is also analyzed

    Utility of polygenic risk scores in UK cancer screening: a modelling analysis

    Get PDF
    BACKGROUND: It is proposed that, through restriction to individuals delineated as high risk, polygenic risk scores (PRSs) might enable more efficient targeting of existing cancer screening programmes and enable extension into new age ranges and disease types. To address this proposition, we present an overview of the performance of PRS tools (ie, models and sets of single nucleotide polymorphisms) alongside harms and benefits of PRS-stratified cancer screening for eight example cancers (breast, prostate, colorectal, pancreas, ovary, kidney, lung, and testicular cancer). METHODS: For this modelling analysis, we used age-stratified cancer incidences for the UK population from the National Cancer Registration Dataset (2016–18) and published estimates of the area under the receiver operating characteristic curve for current, future, and optimised PRS for each of the eight cancer types. For each of five PRS-defined high-risk quantiles (ie, the top 50%, 20%, 10%, 5%, and 1%) and according to each of the three PRS tools (ie, current, future, and optimised) for the eight cancers, we calculated the relative proportion of cancers arising, the odds ratios of a cancer arising compared with the UK population average, and the lifetime cancer risk. We examined maximal attainable rates of cancer detection by age stratum from combining PRS-based stratification with cancer screening tools and modelled the maximal impact on cancer-specific survival of hypothetical new UK programmes of PRS-stratified screening. FINDINGS: The PRS-defined high-risk quintile (20%) of the population was estimated to capture 37% of breast cancer cases, 46% of prostate cancer cases, 34% of colorectal cancer cases, 29% of pancreatic cancer cases, 26% of ovarian cancer cases, 22% of renal cancer cases, 26% of lung cancer cases, and 47% of testicular cancer cases. Extending UK screening programmes to a PRS-defined high-risk quintile including people aged 40–49 years for breast cancer, 50–59 years for colorectal cancer, and 60–69 years for prostate cancer has the potential to avert, respectively, a maximum of 102, 188, and 158 deaths annually. Unstratified screening of the full population aged 48–49 years for breast cancer, 58–59 years for colorectal cancer, and 68–69 years for prostate cancer would use equivalent resources and avert, respectively, an estimated maximum of 80, 155, and 95 deaths annually. These maximal modelled numbers will be substantially attenuated by incomplete population uptake of PRS profiling and cancer screening, interval cancers, non-European ancestry, and other factors. INTERPRETATION: Under favourable assumptions, our modelling suggests modest potential efficiency gain in cancer case detection and deaths averted for hypothetical new PRS-stratified screening programmes for breast, prostate, and colorectal cancer. Restriction of screening to high-risk quantiles means many or most incident cancers will arise in those assigned as being low-risk. To quantify real-world clinical impact, costs, and harms, UK-specific cluster-randomised trials are required. FUNDING: The Wellcome Trust

    Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results From MyPathway, an Open-Label, Phase IIa Multiple Basket Study

    Get PDF
    PURPOSE: Detection of specific molecular alterations in tumors guides the selection of effective targeted treatment of patients with several types of cancer. These molecular alterations may occur in other tumor types for which the efficacy of targeted therapy remains unclear. The MyPathway study evaluates the efficacy and safety of selected targeted therapies in tumor types that harbor relevant genetic alterations but are outside of current labeling for these treatments. METHODS: MyPathway (ClinicalTrials.gov identifier: NCT02091141) is a multicenter, nonrandomized, phase IIa multiple basket study. Patients with advanced refractory solid tumors harboring molecular alterations in human epidermal growth factor receptor-2, epidermal growth factor receptor, v-raf murine sarcoma viral oncogene homolog B1, or the Hedgehog pathway are treated with pertuzumab plus trastuzumab, erlotinib, vemurafenib, or vismodegib, respectively. The primary end point is investigator-assessed objective response rate within each tumor-pathway cohort. \ud RESULTS: Between April 1, 2014 and November 1, 2016, 251 patients with 35 different tumor types received study treatment. The efficacy population contains 230 treated patients who were evaluated for response or discontinued treatment before evaluation. Fifty-two patients (23%) with 14 different tumor types had objective responses (complete, n = 4; partial, n = 48). Tumor-pathway cohorts with notable objective response rates included human epidermal growth factor receptor-2–amplified/overexpressing colorectal (38% [14 of 37]; 95% CI, 23% to 55%) and v-raf murine sarcoma viral oncogene homolog B1 V600-mutated non–small-cell lung cancer (43% [six of 14]; 95% CI, 18% to 71%). CONCLUSIONS: The four currently approved targeted therapy regimens in the MyPathway study produced meaningful responses when administered without chemotherapy in several refractory solid tumor types not currently labeled for these agents

    The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer.

    Get PDF
    Purpose: Quantifying chromosomal instability (CIN) has both prognostic and predictive clinical utility in breast cancer. In order to establish a robust and clinically applicable gene expression-based measure of CIN, we assessed the ability of four qPCR quantified genes selected from the 70-gene Chromosomal Instability (CIN70) expression signature to stratify outcome in patients with grade 2 breast cancer. Methods: AURKA, FOXM1, TOP2A and TPX2 (CIN4), were selected from the CIN70 signature due to their high level of correlation with histological grade and mean CIN70 signature expression in silico. We assessed the ability of CIN4 to stratify outcome in an independent cohort of patients diagnosed between 1999 and 2002. 185 formalin-fixed, paraffin-embedded (FFPE) samples were included in the qPCR measurement of CIN4 expression. In parallel, ploidy status of tumors was assessed by flow cytometry. We investigated whether the categorical CIN4 score derived from the CIN4 signature was correlated with recurrence-free survival (RFS) and ploidy status in this cohort. Results: We observed a significant association of tumor proliferation, defined by Ki67 and mitotic index (MI), with both CIN4 expression and aneuploidy. The CIN4 score stratified grade 2 carcinomas into good and poor prognostic cohorts (mean RFS: 83.864.9 and 69.4 +- 8.2 months, respectively, p = 0.016) and its predictive power was confirmed by multivariate analysis outperforming MI and Ki67 expression. Conclusions: The first clinically applicable qPCR derived measure of tumor aneuploidy from FFPE tissue, stratifies grade 2 tumors into good and poor prognosis groups

    Functional genomic analysis of drug sensitivity pathways to guide adjuvant strategies in breast cancer

    Get PDF
    The widespread introduction of high throughput RNA interference screening technology has revealed tumour drug sensitivity pathways to common cytotoxics such as paclitaxel, doxorubicin and 5-fluorouracil, targeted agents such as trastuzumab and inhibitors of AKT and Poly(ADP-ribose) polymerase (PARP) as well as endocrine therapies such as tamoxifen. Given the limited power of microarray signatures to predict therapeutic response in associative studies of small clinical trial cohorts, the use of functional genomic data combined with expression or sequence analysis of genes and microRNAs implicated in drug response in human tumours may provide a more robust method to guide adjuvant treatment strategies in breast cancer that are transferable across different expression platforms and patient cohorts

    A Functional Taxonomy of Tumor Suppression in Oncogenic KRAS-Driven Lung Cancer

    Get PDF
    Cancer genotyping has identified a large number of putative tumor suppressor genes. Carcinogenesis is a multistep process, but the importance and specific roles of many of these genes during tumor initiation, growth, and progression remain unknown. Here we use a multiplexed mouse model of oncogenic KRAS–driven lung cancer to quantify the impact of 48 known and putative tumor suppressor genes on diverse aspects of carcinogenesis at an unprecedented scale and resolution. We uncover many previously understudied functional tumor suppressors that constrain cancer in vivo. Inactivation of some genes substantially increased growth, whereas the inactivation of others increases tumor initiation and/or the emergence of exceptionally large tumors. These functional in vivo analyses revealed an unexpectedly complex landscape of tumor suppression that has implications for understanding cancer evolution, interpreting clinical cancer genome sequencing data, and directing approaches to limit tumor initiation and progression. SIGNIFICANCE: Our high-throughput and high-resolution analysis of tumor suppression uncovered novel genetic determinants of oncogenic KRAS–driven lung cancer initiation, overall growth, and exceptional growth. This taxonomy is consistent with changing constraints during the life history of cancer and highlights the value of quantitative in vivo genetic analyses in autochthonous cancer models
    • 

    corecore