294 research outputs found

    Effect of land use change on the carbon cycle in Amazon soils

    Get PDF
    The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales

    Completing below-ground carbon budgets for pastures, recovering forests, and mature forests of Amazonia

    Get PDF
    The objective of this grant was to complete below-ground carbon budgets for pastures and forest soils in the Amazon. Profiles of radon and carbon dioxide were used to estimate depth distribution of CO2 production in soil. This information is necessary for determining the importance of deep roots as sources of carbon inputs. Samples were collected for measuring root biomass from new research sites at Santana de Araguaia and Trombetas. Soil gases will be analyzed for CO2 and (14)CO2, and soil organic matter will be analyzed for C-14. Estimates of soil texture from the RADAMBRASIL database were merged with climate data to calculate soil water extraction by forest canopies during the dry season. In addition, a preliminary map of areas where deep roots are needed for deep soil water was produced. A list of manuscripts and papers prepared during the reporting periods is given

    Impacts of Drying and Rewetting on the Radiocarbon Signature of Respired CO2 and Implications for Incubating Archived Soils

    Get PDF
    The radiocarbon signature of respired CO2 (∆14C-CO2) measured in laboratory soil incubations integrates contributions from soil carbon pools with a wide range of ages, making it a powerful model constraint. Incubating archived soils enriched by “bomb-C” from mid-20th century nuclear weapons testing would be even more powerful as it would enable us to trace this pulse over time. However, air-drying and subsequent rewetting of archived soils, as well as storage duration, may alter the relative contribution to respiration from soil carbon pools with different cycling rates. We designed three experiments to assess air-drying and rewetting effects on ∆14C-CO2 with constant storage duration (Experiment 1), without storage (Experiment 2), and with variable storage duration (Experiment 3). We found that air-drying and rewetting led to small but significant (α < 0.05) shifts in ∆14C-CO2 relative to undried controls in all experiments, with grassland soils responding more strongly than forest soils. Storage duration (4–14 y) did not have a substantial effect. Mean differences (95% CIs) for experiments 1, 2, and 3 were: 23.3‰ (±6.6), 19.6‰ (±10.3), and 29.3‰ (±29.1) for grassland soils, versus −11.6‰ (±4.1), 12.7‰ (±8.5), and −24.2‰ (±13.2) for forest soils. Our results indicate that air-drying and rewetting soils mobilizes a slightly older pool of carbon that would otherwise be inaccessible to microbes, an effect that persists throughout the incubation. However, as the bias in ∆14C-CO2 from air-drying and rewetting is small, measuring ∆14C-CO2 in incubations of archived soils appears to be a promising technique for constraining soil carbon models

    Soil minerals mediate climatic control of soil C cycling on annual to centennial timescales

    Get PDF
    Climate and parent material both affect soil C persistence, yet the relative importance of climatic versus mineralogical controls on soil C dynamics remains unclear. To test this, we collected soil samples in 2001, 2009, and 2019 along a combined gradient of parent material (andesite, basalt, granite) and climate (mean annual temperature (MAT): 6.5 &deg;C &ldquo;cold&rdquo;, 8.6 &deg;C &ldquo;cool&rdquo;, 12.0 &deg;C &ldquo;warm&rdquo;). We measured the radiocarbon of heterotrophically respired CO2 (∆14Crespired) and bulk soil C (∆14Cbulk) as proxies for transient and persistent soil C, and characterized mineral assemblages using selective dissolution. Using linear regression, we observed that MAT was not a significant predictor of either ∆14Cbulk or ∆14Crespired, yet climate was highly significant as a categorical variable. Climate explained more variance in ∆14Cbulk and ∆14Crespired over 0&ndash;0.1 m, but parent material explained more from 0.1&ndash;0.3 m. Cool site soil C was more persistent (lower ∆14Cbulk) than cold or warm climate sites, and also more persistent on andesitic soils, followed by basaltic and then granitic soils. Poorly crystalline metal oxides (PCMs) (but not crystalline metal oxides) were significantly (p &lt; 0.1) correlated with ∆14Cbulk, ∆14Crespired, and ∆14Crespired - ∆14Cbulk, indicating their importance for soil C cycling on both short and long timescales. The change in ∆14Crespired observed over the study period was linearly related to MAT for the granite soils with the lowest PCM content, but not in the andesitic and basaltic soils with higher PCM content. This link between PCM abundance and the decoupling of MAT and soil C cycling rates suggests PCMs may attenuate the temperature sensitivity of decomposition.</p

    Community Composition and Abundance of Bacterial, Archaeal and Nitrifying Populations in Savanna Soils on Contrasting Bedrock Material in Kruger National Park, South Africa

    Get PDF
    Savannas cover at least 13% of the global terrestrial surface and are often nutrient limited, especially by nitrogen. To gain a better understanding of their microbial diversity and the microbial nitrogen cycling in savanna soils, soil samples were collected along a granitic and a basaltic catena in Kruger National Park (South Africa) to characterize their bacterial and archaeal composition and the genetic potential for nitrification. Although the basaltic soils were on average 5 times more nutrient rich than the granitic soils, all investigated savanna soil samples showed typically low nutrient availabilities, i.e., up to 38 times lower soil N or C contents than temperate grasslands. Illumina MiSeq amplicon sequencing revealed a unique soil bacterial community dominated by Actinobacteria (20–66%), Chloroflexi (9–29%), and Firmicutes (7–42%) and an increase in the relative abundance of Actinobacteria with increasing soil nutrient content. The archaeal community reached up to 14% of the total soil microbial community and was dominated by the thaumarchaeal Soil Crenarchaeotic Group (43–99.8%), with a high fraction of sequences related to the ammonia-oxidizing genus Nitrosopshaera sp. Quantitative PCR targeting amoA genes encoding the alpha subunit of ammonia monooxygenase also revealed a high genetic potential for ammonia oxidation dominated by archaea (~5 × 107 archaeal amoA gene copies g−1 soil vs. mostly < 7 × 104 bacterial amoA gene copies g−1 soil). Abundances of archaeal 16S rRNA and amoA genes were positively correlated with soil nitrate, N and C contents. Nitrospira sp. was detected as the most abundant group of nitrite oxidizing bacteria. The specific geochemical conditions and particle transport dynamics at the granitic catena were found to affect soil microbial communities through clay and nutrient relocation along the hill slope, causing a shift to different, less diverse bacterial and archaeal communities at the footslope. Overall, our results suggest a strong effect of the savanna soils' nutrient scarcity on all microbial communities, resulting in a distinct community structure that differs markedly from nutrient-rich, temperate grasslands, along with a high relevance of archaeal ammonia oxidation in savanna soils

    Using BEXIS 2 as efficient research data management system for the ATTO research project

    Get PDF
    The Amazon Tall Tower Observatory (ATTO) is a joint German-Brazilian project launched in 2009 and funded by MCTI (Brazil), BMBF (Germany) and the Max-Planck Society. ATTO is with its 325 m-tall tower, the associated research infrastructure and nearby scientific plots a unique multidisciplinary scientific research platform in a region of global significance. Located at the centre of the world’s largest continuous tropical forest, ATTO allows the observation of geo-/bio-/atmosphere interactions and their impact on climate, atmospheric chemistry, aerosols and clouds, and greenhouse gases in near-pristine conditions. From the data management point of view, the main challenge is to provide a functional platform for consortium-internal and -external transparency, traceability, and data exchange between a large number of institutions and research groups that are involved in the project in order to foster collaboration and maximize the output of the project. We use BEXIS 2, a flexible, interoperable and modular data management software, to provide efficient data management and exchange within such a large research consortium; and to allow long-term data archiving, documentation, secondary analysis, data reuse and accessibility for scientific community. We will present a showcase how the BEXIS 2 instance was modified in order to manage highly diverse data of a large research consortium ranging from i.e. micrometeorological data and greenhouse gas measurements as well as remote sensing data towards soil and water samples. The main focus will be on the flexibility of the metadata definition and the implementation of an automatic DOI registration, which allows BEXIS 2 to act as a data repository for the ATTO project

    Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment

    Get PDF
    The Amazon Basin experiences severe droughts that may become more common in the future. Little is known of the effects of such droughts on Amazon forest productivity and carbon allocation. We tested the prediction that severe drought decreases litterfall and wood production but potentially has multiple cancelling effects on belowground production within a 7-year partial throughfall exclusion experiment. We simulated an approximately 35–41% reduction in effective rainfall from 2000 through 2004 in a 1 ha plot and compared forest response with a similar control plot. Wood production was the most sensitive component of above-ground net primary productivity (ANPP) to drought, declining by 13% the first year and up to 62% thereafter. Litterfall declined only in the third year of drought, with a maximum difference of 23% below the control plot. Soil CO2 efflux and its 14C signature showed no significant treatment response, suggesting similar amounts and sources of belowground production. ANPP was similar between plots in 2000 and declined to a low of 41% below the control plot during the subsequent treatment years, rebounding to only a 10% difference during the first post-treatment year. Live aboveground carbon declined by 32.5 Mg ha−1 through the effects of drought on ANPP and tree mortality. Results of this unreplicated, long-term, large-scale ecosystem manipulation experiment demonstrate that multi-year severe drought can substantially reduce Amazon forest carbon stocks
    • 

    corecore