282 research outputs found

    Laser Raman and Infrared Spectra of 6-Amino-M-Cresol

    Get PDF

    Experimental Investigation, ANN Modelling and TOPSIS Optimization of a Gasoline Premixed HCCI-DI Engine with Direct Injection of FeCl3 Nanodditive Blended WCO

    Get PDF
    Experiments have been carried out to compute performance, combustion and emission characteristics of a homogeneous charge compression ignition – direct injection (HCCI-DI) engine in which 20% of the fuel was premixed in the intake manifold and the remaining 80% of the fuel was injected directly. Gasoline was selected as the premixed fuel and three different fuel combinations, namely, diesel, B50 (50% waste cooking oil (WCO) and 50% diesel by volume) and WCO were selected as direct injection (DI) fuels. 100 ppm of FeCl3 nanoadditive was blended with the DI fuels aimed at enhancing favourable fuel properties. The experimental investigations show a reduction of 54.17% and 50% in hydrocarbon (HC) and carbon monoxide (CO) emissions, respectively, in the case of WCO fuelled DI combustion compared with the diesel fuelled combustion. Significant increase in the cylinder pressure (pcyl) and the rate of heat release (ROHR) values was observed when the FeCl3 nanoadditive blended fuel was used. Also, with this type of fuel smoke emissions were reduced by 34.8%. Significant increase in the brake thermal efficiency (ηbth) with reduced nitrogen oxide (NOx) emissions was observed in the HCCI-DI combustion. Artificial neural network (ANN) was used for forecasting the performance of and emissions from the engine in different operating conditions. The technique for order preference by similarity to ideal solution (TOPSIS) was used for optimizing engine input parameters, which can result in maximum efficiency and minimum emissions

    Vibrational Spectra and Normal Coordinate Analysis of N-Methylthiopropionamide

    Get PDF

    Theoretical and experimental studies on 2-(2-methyl-5-nitro-1-imidazolyl)ethanol

    Get PDF
    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra, natural bond orbital (NBO) and UV spectral analysis of [2-(2-methyl-5-nitro-1-imidazolyl) ethanol] (Metronidazole-MTD). The FT-IR solid phase (4000-400 cm-1) liquid phase, and FT-Raman spectra (3500-50 cm-1) of MTD were recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of MTD in the ground state have been calculated using the density functional method B3LYP with 6-311G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of the Gauss view program package. Stability of the molecule arising from hyperconjugative interactions and charge delocalization have been analyzed using natural bond orbital analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order stabilization energies E2 confirms the occurrence of Intramolecular Charge Transfer (ICT) within the molecule. The UV spectrum was measured in ethanol solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge Independent Atomic Orbital (GIAO) method and compared with experimental results.  Finally the results of calculations were applied to simulate Infrared and Raman spectra of the title compound which show good agreement with observed spectra

    Identification of Important Chemical Features of 11β-Hydroxysteroid Dehydrogenase Type1 Inhibitors: Application of Ligand Based Virtual Screening and Density Functional Theory

    Get PDF
    11β-Hydroxysteroid dehydrogenase type1 (11βHSD1) regulates the conversion from inactive cortisone to active cortisol. Increased cortisol results in diabetes, hence quelling the activity of 11βHSD1 has been thought of as an effective approach for the treatment of diabetes. Quantitative hypotheses were developed and validated to identify the critical chemical features with reliable geometric constraints that contribute to the inhibition of 11βHSD1 function. The best hypothesis, Hypo1, which contains one-HBA; one-Hy-Ali, and two-RA features, was validated using Fischer’s randomization method, a test and a decoy set. The well validated, Hypo1, was used as 3D query to perform a virtual screening of three different chemical databases. Compounds selected by Hypo1 in the virtual screening were filtered by applying Lipinski’s rule of five, ADMET, and molecular docking. Finally, five hit compounds were selected as virtual novel hit molecules for 11βHSD1 based on their electronic properties calculated by Density functional theory

    FTIR and Laser Raman Spectra of 2-Amino-5-Bromobenzoic Acid

    No full text
    corecore