Vibrational spectra and normal coordinate analysis of N-methylthiopropionamide

N Sundaraganesan and S Mohan

Raman School of Physics, Pondicherry University, Pondicherry-605 014, India

Received 17 June 1993, accepted 26 November 1993

Abstract : The Raman spectrum of N-methylthiopropionamide was recorded in the region 100-4000 cm⁻¹. The infrared spectra of N-methylthiopropionamide and N-deuterated N - methylthiopropionamide and their solutions in chloroform were also recorded in the range 4000 – 180 cm⁻¹. Normal coordinate treatment of both N-methylthiopropionamide and N-deuterated N-methylthiopropionamide was carried out using general quadratic valence force field and the force constants were refined by the damped least squares method. The potential energy distributions in symmetry coordinates are discussed in relation to the mixing of skeletal frequencies for N - methylthiopropionamide and the nature of absorption band is investigated.

Vibrational spectroscopy has proved to be of much help in elucidating the structure of amides. Infrared and Raman spectra studies of dichroism, band contour studies and normal coordinate analysis of simple primary, secondary and tertiary amides and thioamides and of their deuterated species enabled various workers to assign the skeletal frequencies and to investigate the nature of amide I, amide II and the amide III absorption bands.

In this context, the vibrational spectra of N-methylthiopropionamide have been the object of much interest. IR and Raman spectra with tentative assignments were reported by Venkata Ramiah and Usha Bai [1]. However, the IR data was limited to 400 cm⁻¹, and Raman spectrum was limited between 200–1600 cm⁻¹. The normal coordinate treatment of Nmethylthiopropionamide was carried out by Raman Rao *et al* [2], but there is no report on the outof-plane vibrations of both N-methylthiopropionamide and N-deuterated N-methylthiopropionamide.

Keywords : Vibrational spectra, N-methylthiopropionamide, N-deuterated thiopropionamide, vibrational assignment

PACS Nos. : 33.10. Gx, 33.20.-t, 78.30.-j

As there are several discrepancies in the assignments proposed in the above investigations [1,2], an attempt has been made to reinvestigate the Raman and infrared spectra by including both in-plane and out-of-plane vibrations. In the present work, we report a complete infrared and Raman data along with the results of normal coordinate analysis taking into account the internal modes of the CH₃ and CH₂ groups.

© 1994 IACS

Species		Observed frequency		Vibrational assignments	ATTAN MATTAN
	Infrared frequency and intensity NMTP cm ⁻¹	Infrared frequency for deuterated NMTP cm ⁻¹	Laser Raman frequency and intensity NMTP cm ⁻¹	NM IF, deutrated NM IF	
Y,	3225 S	2380 MS	3240 VS	VN-H, VN-D	98S 1. 97S1
Y	2975 S	2970 MS	2980 VS	$Vasy (C'H_3), Vas(C''' - H_3)$	995 J. 995,
A'	2925 MS	2930 MS	ı	vasy (CH ₁), vas (C'-H ₁)	97S 1, 93S1
Y	2873 VW	2865 VW	I	$vsy(C"H_3)$, $vsy(C''' - H_3)$	995 4. 95Se
Ą	2870 VW	2861 W	1	vsy(C'H ₃), vsy(C'-H ₃)	98S ₅ , 98S ₆
¥	2870 VW	2860 W	ı	$C'' < \begin{pmatrix} H \\ H \end{pmatrix}$ sym. stretch $C'' < \begin{pmatrix} H \\ H \end{pmatrix}$ sym. str.	99S ₆ , 98S ₆
'Y	1560 VS	1530 VS	1550 W	C-N stretch, C-N stretch	44S 7, 18S ₃ , 20S ₁₁ , 16S ₂₃ , 68S ₇ , 21S ₁₁ , 18S ₂₃
A'	1435 MS	1435 W	1412 M	C"" H ₁ asym. deform, C"" H ₁ asym. deform	725 g. 105 10, 815g. 125 10
A'	1430 VS	1427 VS	I	CH ₃ asym. deform, CH ₃ asym. deform	51S 9, 28S 14, 62S 9, 20S 14
Y	1432 MS	1421 MS	ı	C'' ightarrow H bending, C'' ightarrow H bending	21S ₁₁ , 15S ₈ , 40S ₁₀ , 31S ₁₁ , 14S ₈ , 52S ₁₀
A'	1365 W	1360 VW	1377 W	C ^m H ₃ sym. deform, C ^m H ₃ sym. deform	68S II, 15S ₁₀ , 65S ₁₁ , 21S ₁₀
A'	1359 MS	1370 MS	1350 W	CH3 sym. deform, CH3 sym. deform	48S ₁₄ , 31S ₉ , 51S ₁₄ , 31S ₉
A'	1240 S	1230 MS	1250M	N-H deformation, N-D deformation	32S 12, 34S17, 38S12, 30S17
A'	1204 MS	1180 VW	ł	C"H ₃ rocking. C"H ₃ rocking	685 I S. 21 S2, 61 S ₁₅ , 205 ₂

Table 1. Vibrational assignments of N-methylthiopropionamide and N-deuterated N-methylthiopropionamide.*

88

N Sundaraganesan and S Mohan

Species		Observed frequency		Vibrational assignments	PED% NMTP destremented NMTP
	Infrared frequency and intensity NMTP cm ⁻¹	Infrared frequency for deuterated NMTP am ⁻¹	Laser Raman frequency and intensity NMTP cm ⁻¹	NMLF, Ocuctated NMLF	
A'	1106 MS	M 0601	1080 M	CH3 rocking, CH3 rocking	405 13, 20517, 38513, 22517
,V	1003 VS	M 0001	I	$C'' ig {}^H_H$ wagging, $C'' ig {}^H_H$ wagging	42S ₁₆ , 21S ₁₉ , 42S ₁₆ , 28S ₁₉
A'	952 MS	928 VS	ı	C-C" stretch, C-C" stretch	51S ₁₇ , 11S ₁₃ , 58S ₁₇ , 10S ₁₃ , 10S ₂₀
A'	I	860 VW	905 W	N-C" stretch, C"-N stretch	495 g, 215 ₁₇ , 615 ₁₈ , 115 ₁₇
A'	WV 067	MV 067	775 W	C'-C" stretch, C'-C" stretch	58S g, 20S ₁₇ , 56S ₁₉ , 21S ₁₇
A'	680 MS	MA 179	675 VS	C=S stretch, C=S stretch	38S 20, 11S24, 45S20, 15SZ7
Y,	530 VW	WV 622	ı	S=C-N deform, S=C-N deform	268 21 , 175 17 , 185 18, 245 24 , 328 21 , 185 71 , 205 18, 215 24
Y,	480 VW	470 W	480 M	C'-C"-C deform, C'-C"-C deform	228 22, 108 19, 268 13, 288 22. 158 17, 218 13
A'	380 VW	360 VW	380 M	C – C" rock, C – C" rock	325 zg, 155 lg, 385 zg, 215 g
¥	280 M	260 W	275 M	N – C‴ rock, N – C‴ rock	485 2 4, 12521, 41524, 205 ₂₁
۸″	2905 MS	2873 W	ı	v _{asy} (CH ₃) ₂ , v _{as} (CH ₃) ₂	97 v _æ (CH ₃) ₂ , 95 v _æ (CH ₃) ₂
۸″	2990 S	2867 W	ı	v _{ssy} (CH ₃) ₂ , v _{ss} (CH ₃) ₂	95 v _{asy} (CH ₃) ₂ , 97 v _{as} (CH ₃) ₂
٧°	I	2855 MS	2810 VS	v_{asy} (CH ₂), v_{as} (CH ₂)	99 v _{asy} (CH ₂), 91 v _{as} (CH ₂)
ν,	1415 W	1390 W	1415 M	δ _{asy} (CH ₃) 2. δ _{asy} (CH ₃) 2	68 δ _{asy} (CH ₃) ₂ + 2l γ(CH ₃) ₂ 7l δ _{asy} (CH ₃) ₂ + 18 γ(CH ₃) ₂
۳	1413 W	1389 VW	ı	စို့ _{စာ} (CH ₃) 2. စို့ _{စာy} (CH ₃) 2	64 δ _{asy} (CH ₃) ₂ + 17 γ(CH ₃) ₂ 67 δ _{as} (CH ₃) ₂ + 21 γ(CH ₃) ₂

Table 1. (Conid.)

Vibrational spectra and normal coordinate analysis etc

species		Observed frequency		Vibrational assignments	PED9
	Infrared frequency and intensity NMTP cm ⁻¹	Infrared frequency for deuterated NMTP onf ¹	Laser Raman frequency and intensity NMTP cm ⁻¹	NMTP, deuterated NMTP	NMTP, deuterated NMTP
A″	1410 W	1387 VW	1410M	δ _{asy} (CH ₂), δ _{asy} (CH ₂)	72 δ _{avv} (CH1) 1 + 15 Y (CH2)
٨"	1165 W	1150 W	I	γ(CH ₃) ₂ , γ(CH ₃) ₂	18γ (CH ₃) + 69 bas (CH ₂) 54 γ (CH ₃) + 22 basv (CH ₂)
٨"	1150 W	1149 VW	I	γ(CH ₃) ₂ , γ(CH ₃) ₂	697 (CH ₃) ₂ + 10 bas (CH ₂) 547 (CH ₃) ₂ + 22 basy (CH ₃) ₃ .
٨*	1145 W	W 6111	1140 MS	γ(CH ₂), γ(CH ₂)	55Y(CH ₃) ₂ + 25 bas (CH ₂) 71Y(CH ₃) + 26 basy (CH ₃)
Α"	985 W	W 086	975 M	ω(CH ₃) ₂ , ω(CH ₃) ₂	75γ(CH ₂) + 11 δas (CH ₃) ₂ 59ω(CH ₃) ₂ + 10τ (CH ₃) ₂
Α"	ł	M/ 6/6	M 066	ω(CH ₃) ₂ , ω(CH ₃) ₂	60œ (CH3)2+ 12 τ (CH3)2 51œ (CH3)2 + 15 τ (CH3)2
Α"	M 016	M 012	I	ω (CH ₂). ω(CH ₂)	51@(CH ₃) ₂ +18τ(CH ₃) ₂ 49@(CH ₃)+21τ(CH ₃),
۲,	M 622	t	225 W	વCH3) 2. વCH3) 2_	540 (CH ₂) + 15t (CH ₂) 54t (CH ₃) ₂ + 29 0 (CH ₃) ₂
Α″	188 W	188 W	M001	qCH ₃) ₂ , qCH ₃) ₂	49τ (CH ₃) ₂ + 22 ω (CH ₃) ₂ 48τ (CH ₃) + 19ω (CH ₃) ₂ ,
٨"	,	180 W	140 W	tt(CH ₂), t(CH ₃)	41r (CH ₃) ₂ + 18 ω (CH ₃) ₂ 42r (CH ₂) + 24ω (CH ₂), 52r (CH ₅) + 26ω (CH ₅)
v - Stretch * The syn	δ – deformation Innetry coordinates (S)	β - bending γ -rocki) are available from the author	ng wagging R.	t - torsion	

90

Table 1. (Contd.)

N Sundaraganesan and S Mohan

Pure chemicals of N-methylthiopropionamide (NMTP) obtained from Bharathidasan University was used as such without further purification, to record Raman and infrared spectra. The laser Raman spectrum of NMTP was recorded using 488 nm line of Ar⁺ for excitation in the region 100–4000 cm⁻¹ in Cary Model grating spectrophotometer with a 4 W A r⁺ laser. The infrared spectrum of NMTP and N-deuterated NMTP and their solutions in chloroform were recorded using Perkin Elmer 983G double beam grating spectrophotometer. N-deuteration was achieved by repeated exchanges with D₂O. The removal of D₂O was carried out at room temperature in order to minimize a possible sample deterioration which was reported in literature [3]. Experiments carried out under the same conditions used for the deuterium exchange, but using normal water as solvent, did not reveal detectable sample changes.

In order to ascertain the amount of mixing among the normal modes and to obtain a more accurate description of the fundamental vibrations of NMTP and N-deuterated NMTP, a normal coordinate analysis was undertaken. The calculations were performed using Wilson's FG matrix method with the computer programs developed by Schachtschneider [4].

The molecular skeleton is planar to a good approximation and therefore a C_s symmetry can be assumed. This results in 39 fundamental vibrations which span the irreducible representations as 24A' (in-plane) and 15A'' (out-of-plane) vibrations. All the fundamental modes are active in both Raman and infrared spectra. The bond lengths used in the present investigation are C-N = 1.36 Å; C = S = 1.71 Å; N-C = 1.47 Å; C-C = 1.54 Å; C-H = 1.09 Å and N-H = 1.02 Å. These values are taken from similar related system in reference to the title molecule.

The observed and calculated frequencies, potential energy distributions (PED) in symmetry coordinates for NMTP and N-deuterated NMTP are shown in Table 1. PED in symmetry coordinates is obtained by using the formula $F_{\mu}L_{\mu k}^2/\lambda_k$. PED contributions below 10% are not shown in the table.

References

- [1] K Venkata Ramiah and P Usha Bai 1973 Curr. Sci. 42 51
- [2] G Ramana Rao, V Balasubramanian and K Venkata Ramiah 1978 Indian J. Pure Appl. Phys. 16 657
- [3] R A Kydd and A R C Dunham 1983 J. Molec. Struct. 69 79
- [4] J H Schachtschneider 1969 Technical Report (Shell Development Co. Emeryville, CA USA)