158 research outputs found
Lack of methylated hopanoids renders the cyanobacterium Nostoc punctiforme sensitive to osmotic and pH stress
© 2017 American Society for Microbiology. To investigate the function of 2-methylhopanoids in modern cyanobacteria, the hpnP gene coding for the radical S-adenosyl methionine (SAM) methylase protein that acts on the C-2 position of hopanoids was deleted from the filamentous cyanobacterium Nostoc punctiforme ATCC 29133S. The resulting ΔhpnP mutant lacked all 2-methylhopanoids but was found to produce much higher levels of two bacteriohopanepentol isomers than the wild type. Growth rates of the ΔhpnP mutant cultures were not significantly different from those of the wild type under standard growth conditions. Akinete formation was also not impeded by the absence of 2-methylhopanoids. The relative abundances of the different hopanoid structures in akinete-dominated cultures of the wild-type and ΔhpnP mutant strains were similar to those of vegetative cell-dominated cultures. However, the ΔhpnP mutant was found to have decreased growth rates under both pH and osmotic stress, confirming a role for 2-methylhopanoids in stress tolerance. Evidence of elevated photosystem II yield and NAD(P)H-dependent oxidoreductase activity in the ΔhpnP mutant under stress conditions, compared to the wild type, suggested that the absence of 2-methylhopanoids increases cellular metabolic rates under stress conditions
Transmembrane Protein Oxygen Content and Compartmentalization of Cells
Recently, there was a report that explored the oxygen content of transmembrane proteins over macroevolutionary time scales where the authors observed a correlation between the geological time of appearance of compartmentalized cells with atmospheric oxygen concentration. The authors predicted, characterized and correlated the differences in the structure and composition of transmembrane proteins from the three kingdoms of life with atmospheric oxygen concentrations in geological timescale. They hypothesized that transmembrane proteins in ancient taxa were selectively excluding oxygen and as this constraint relaxed over time with increase in the levels of atmospheric oxygen the size and number of communication-related transmembrane proteins increased. In summary, they concluded that compartmentalized and non-compartmentalized cells can be distinguished by how oxygen is partitioned at the proteome level. They derived this conclusion from an analysis of 19 taxa. We extended their analysis on a larger sample of taxa comprising 309 eubacterial, 34 archaeal, and 30 eukaryotic complete proteomes and observed that one can not absolutely separate the two groups of cells based on partition of oxygen in their membrane proteins. In addition, the origin of compartmentalized cells is likely to have been driven by an innovation than happened 2700 million years ago in the membrane composition of cells that led to the evolution of endocytosis and exocytosis rather than due to the rise in concentration of atmospheric oxygen
The paleobiological record of photosynthesis
Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth’s ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established
Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor
Cholesterol influences ion-channel function, distribution and clustering in the membrane, endocytosis, and exocytic sorting of the nicotinic acetylcholine receptor (AChR). We report the occurrence of a cholesterol recognition motif, here coined “CARC”, in the transmembrane regions of AChR subunits that bear extensive contact with the surrounding lipid, and are thus optimally suited to convey cholesterol-mediated signaling from the latter. Three cholesterol molecules could be docked on the transmembrane segments of each AChR subunit, rendering a total of 15 cholesterol molecules per AChR molecule. The CARC motifs contribute each with an energy of interaction between 35 and 52 kJ.mol−1, adding up to a total of about 200 kJ.mol−1 per receptor molecule, i.e. ∼40% of the lipid solvation free energy/ AChR molecule. The CARC motif is remarkably conserved along the phylogenetic scale, from prokaryotes to human, suggesting that it could be responsible for some of the above structural/functional properties of the AChR
The Impact of Oxygen on Metabolic Evolution: A Chemoinformatic Investigation
The appearance of planetary oxygen likely transformed the chemical and biochemical makeup of life and probably triggered episodes of organismal diversification. Here we use chemoinformatic methods to explore the impact of the rise of oxygen on metabolic evolution. We undertake a comprehensive comparative analysis of structures, chemical properties and chemical reactions of anaerobic and aerobic metabolites. The results indicate that aerobic metabolism has expanded the structural and chemical space of metabolites considerably, including the appearance of 130 novel molecular scaffolds. The molecular functions of these metabolites are mainly associated with derived aspects of cellular life, such as signal transfer, defense against biotic factors, and protection of organisms from oxidation. Moreover, aerobic metabolites are more hydrophobic and rigid than anaerobic compounds, suggesting they are better fit to modulate membrane functions and to serve as transmembrane signaling factors. Since higher organisms depend largely on sophisticated membrane-enabled functions and intercellular signaling systems, the metabolic developments brought about by oxygen benefit the diversity of cellular makeup and the complexity of cellular organization as well. These findings enhance our understanding of the molecular link between oxygen and evolution. They also show the significance of chemoinformatics in addressing basic biological questions
Modern Subsurface Bacteria in Pristine 2.7 Ga-Old Fossil Stromatolite Drillcore Samples from the Fortescue Group, Western Australia
Several abiotic processes leading to the formation of life-like signatures or later contamination with actual biogenic traces can blur the interpretation of the earliest fossil record. In recent years, a large body of evidence showing the occurrence of diverse and active microbial communities in the terrestrial subsurface has accumulated. Considering the time elapsed since Archaean sedimentation, the contribution of subsurface microbial communities postdating the rock formation to the fossil biomarker pool and other biogenic remains in Archaean rocks may be far from negligible.In order to evaluate the degree of potential contamination of Archean rocks by modern microorganisms, we looked for the presence of living indigenous bacteria in fresh diamond drillcores through 2,724 Myr-old stromatolites (Tumbiana Formation, Fortescue Group, Western Australia) using molecular methods based on the amplification of small subunit ribosomal RNA genes (SSU rDNAs). We analyzed drillcore samples from 4.3 m and 66.2 m depth, showing signs of meteoritic alteration, and also from deeper "fresh" samples showing no apparent evidence for late stage alteration (68 m, 78.8 m, and 99.3 m). We also analyzed control samples from drilling and sawing fluids and a series of laboratory controls to establish a list of potential contaminants introduced during sample manipulation and PCR experiments. We identified in this way the presence of indigenous bacteria belonging to Firmicutes, Actinobacteria, and Alpha-, Beta-, and Gammaproteobacteria in aseptically-sawed inner parts of drillcores down to at least 78.8 m depth.The presence of modern bacterial communities in subsurface fossil stromatolite layers opens the possibility that a continuous microbial colonization had existed in the past and contributed to the accumulation of biogenic traces over geological timescales. This finding casts shadow on bulk analyses of early life remains and makes claims for morphological, chemical, isotopic, and biomarker traces syngenetic with the rock unreliable in the absence of detailed contextual analyses at microscale
Organic carbon content and carbon isotope variations across the Permo-Triassic boundary in the Gartnerkofel-1 borehole, Carnic Alps, Austria
The Gartnerkofel borehole is one of the most thoroughly studied and described Permo-Triassic sections in the world. Detailed bulk organic carbon isotope studies show a negative base shift from − 24‰ to − 28‰ in the Latest Permian which latter value persists into the Earliest Triassic after which it decreases slightly to − 26‰. Two strongly negative peaks of > − 38‰ in the Latest Permian and a lesser peak of − 31‰ in the Early Triassic are too negative to be due to a greater proportion of more negative organic matter and must be due to very negative methane effects. The overall change to more negative values across the Bulla/Tesero boundary fits the relative rise in sea level for this transition based on the facies changes. A positive shift in organic carbon isotope values at the Late Permian Event Horizon may be due to an increase in land-derived organic detritus at this level—a feature shown by all Tethyan Permo-Triassic boundary sections though these other sections do not have the same values. Carbonate carbon isotope trends are similar in all sections dropping by 2–3 units across the Permo-Triassic boundary. Gartnerkofel carbonate oxygen values are surprisingly, considering the ubiquitous dolomitization, compatible with values elsewhere and indicate reasonable tropical temperatures of 60 °C in the Latest Permian sabkhas to 20–40 °C in the overlying marine transition beds. Increased land-derived input at the Late Permian Event Horizon may be due to offshore transport by tsunamis whose deposits have been recognized in India at this level
Translocation of zeatin riboside and zeatin in soybean explants
Soybean explants consisting of a leaf, one or more young pods, and a subtending piece of stem were given a 1-h pulse of 3 H (ring-labeled)-zeatin riboside (ZR) or -zeatin (Z), via the base of the stem, followed by a 24-h incubation. At the end of the pulse, about 55% of the soluble 3 H was in the leaf blades, 11% in the petiole, 30% in the stem, 2% in the carpels, 0.1% in the seed coats, and 0.08% in the embryos. After 24 h, the percentages were 58, 7, 26, 6, 2, and 0.3, respectively. During this period, the total soluble 3 H decreased by 84%, the remainder being bound to “insoluble” material. The 3 H-cytokinin was rapidly converted to diverse metabolites including adenosine and adenine. At the end of the 1-h pulse, appreciable percentages (1–16%) of the total soluble 3 H in the seed coats chromatographed with ZR (or dihydro ZR) and with the 5′-phosphate of ZR, but these percentages declined markedly at 24 h. No distinct peaks of 3 H corresponded to known metabolites in the soluble extracts of embryos, and at 24 h, the 3 H equivalent to ZR must have been less than 0.0006% of the 3 H-ZR supplied. The bound 3 H corresponded to adenine and guanine in DNA and RNA. In contrast to cytokinin, 3 H-adenosine given as a pulse was readily translocated into the seed coats and embryos. Thus, cytokinin (ZR and Z) flowing up through the xylem from the root system does not readily enter the embryo (though metabolites such as adenosine could), and the seeds clearly do not compete with the leaves for this supply of cytokinin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45929/1/344_2005_Article_BF02042255.pd
- …