170 research outputs found

    Synthesis of gas and vapor molecular sieving silica membranes and analysis of pore size and connectivity

    Get PDF
    Pervaporation and gas permeation properties of microporous silica membranes made by a sol−gel method are discussed. Defect free molecular sieving membranes are prepared by a dip coating process. The molecular sieving performance was measured and controlled based on gas permeation behavior of the membranes. The apparent activation energy for helium permeation and He/N2 perm-selectivity values were used as the parameters for optimization of the membrane performance. The membranes with very high activation energy for He diffusion were used for pervaporation studies with a methanol/MTBE mixture at 323 K. Separation factor values as high as 260 were measured at a total liquid flux of 0.3 kg/m2 hr. Sorption studies performed on corresponding silica gels revealed a separation mechanism based on diffusion of vapor molecules. Permeation of the vapor molecules through the micropores followed an activated diffusion mechanism. The gas permeation data could provide an understanding of the pore size distribution of the membrane, and the vapor sorption and diffusion data on the size and connectivity of the membrane pores

    Effects of communication and utility-based decision making in a simple model of evacuation

    Full text link
    We present a simple cellular automaton based model of decision making during evacuation. Evacuees have to choose between two different exit routes, resulting in a strategic decision making problem. Agents take their decisions based on utility functions, these can be revised as the evacuation proceeds, leading to complex interaction between individuals and to jamming transitions. The model also includes the possibility to communicate and exchange information with distant agents, information received may affect the decision of agents. We show that under a wider range of evacuation scenarios performance of the model system as a whole is optimal at an intermediate fraction of evacuees with access to communication.Comment: 9 pages, 9 figure

    Lung morphology: a cadaver study in Indian population

    Get PDF
    Knowledge of anatomical variations of lung is required by clinicians for accurate interpretation on different imaging techniques. During routine dissection in the anatomy department, a single lung extending uniformly throughout the thoracic cavity was detected in a 35 year old male cadaver. Thereafter a cadaver study was undertaken to report the prevalence of variations involving number, lobes and fissures of lung in Indian population. The thoracic cavities of 29 properly embalmed cadavers containing lungs were dissected and morphological features like number, fissures and lobes were observed for the presence of anatomical variations. The aforementioned single lung cadaver had associated dextrocardia. One accessory lobe on the inferior aspect was observed in 27.2% of lungs studied, whereas supernumerary fissures which were most common in right lower lobe were detected in 35% of lung specimens. The transverse fissure on the right lung was absent in 7.1% and incomplete in 50% of lung specimens. In the right lung, the oblique fissure was absent in 7.1% and incomplete in 39.3% of specimens. The oblique fissure was absent in 10.7% and incomplete in 35.7% of left lungs. Comparative analysis of our work with previous data in the literature suggest that different studies performed on radiological images reported greater prevalence of incomplete or absent pulmonary fissures as compared to various cadaver studies. Our aforementioned findings regarding the variations seen in fissures and lobes of both lungs were different from previous studies. Variations of lung anatomy are important for both the diagnosis and treatment of various diseases involving all the domains of medicine

    Pedestrians moving in dark: Balancing measures and playing games on lattices

    Get PDF
    We present two conceptually new modeling approaches aimed at describing the motion of pedestrians in obscured corridors: * a Becker-D\"{o}ring-type dynamics * a probabilistic cellular automaton model. In both models the group formation is affected by a threshold. The pedestrians are supposed to have very limited knowledge about their current position and their neighborhood; they can form groups up to a certain size and they can leave them. Their main goal is to find the exit of the corridor. Although being of mathematically different character, the discussion of both models shows that it seems to be a disadvantage for the individual to adhere to larger groups. We illustrate this effect numerically by solving both model systems. Finally we list some of our main open questions and conjectures

    Analysis of her1 and her7 Mutants Reveals a Spatio Temporal Separation of the Somite Clock Module

    Get PDF
    Somitogenesis is controlled by a genetic network consisting of an oscillator (clock) and a gradient (wavefront). The “hairy and Enhancer of Split”- related (her) genes act downstream of the Delta/Notch (D/N) signaling pathway, and are crucial components of the segmentation clock. Due to genome duplication events, the zebrafish genome, possesses two gene copies of the mouse Hes7 homologue: her1 and her7. To better understand the functional consequences of this gene duplication, and to determine possible independent roles for these two genes during segmentation, two zebrafish mutants her1hu2124 and her7hu2526 were analyzed. In the course of embryonic development, her1hu2124 mutants exhibit disruption of the three anterior-most somite borders, whereas her7hu2526 mutants display somite border defects restricted to somites 8 (+/−3) to 17 (+/−3) along the anterior-posterior axis. Analysis of the molecular defects in her1hu2124 mutants reveals a her1 auto regulatory feedback loop during early somitogenesis that is crucial for correct patterning and independent of her7 oscillation. This feedback loop appears to be restricted to early segmentation, as cyclic her1 expression is restored in her1hu2124 embryos at later stages of development. Moreover, only the anterior deltaC expression pattern is disrupted in the presomitic mesoderm of her1hu2124 mutants, while the posterior expression pattern of deltaC remains unaltered. Together, this data indicates the existence of an independent and genetically separable anterior and posterior deltaC clock modules in the presomitic mesdorm (PSM)

    Skeletonization of radial and gastroepiploic conduits in coronary artery bypass surgery

    Get PDF
    The use of a skeletonized internal thoracic artery in coronary artery bypass graft surgery has been shown to confer certain advantages over a traditional pedicled technique, particularly in certain patient groups. Recent reports indicate that radial and gastroepiploic arteries can also be harvested using a skeletonized technique. The aim of this study is to systematically review the available evidence regarding the use of skeletonized radial and gastroepiploic arteries within coronary artery bypass surgery, focusing specifically on it's effect on conduit length and flow, levels of endothelial damage, graft patency and clinical outcome. Four electronic databases were systematically searched for studies reporting the utilisation of the skeletonization technique within coronary revascularisation surgery in humans. Reference lists of all identified studies were checked for any missing publications. There appears to be some evidence that skeletonization may improve angiographic patency, when compared with pedicled vessels in the short to mid-term. We have found no suggestion of increased complication rates or increased operating time. Skeletonization may increase the length of the conduit, and the number of sequential graft sites, but no clear clinical benefits are apparent. Our study suggests that there is not enough high quality or consistent evidence to currently advocate the application of this technique to radial or gastroepiploic conduits ahead of a traditional pedicled technique

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Cellular mechanisms by which proinsulin C-peptide prevents insulin-induced neointima formation in human saphenous vein

    Get PDF
    AIMS/HYPOTHESIS: Endothelial cells (ECs) and smooth muscle cells (SMCs) play key roles in the development of intimal hyperplasia in saphenous vein (SV) bypass grafts. In diabetic patients, insulin administration controls hyperglycaemia but cardiovascular complications remain. Insulin is synthesised as a pro-peptide, from which C-peptide is cleaved and released into the circulation with insulin; exogenous insulin lacks C-peptide. Here we investigate modulation of human SV neointima formation and SV-EC and SV-SMC function by insulin and C-peptide. METHODS: Effects of insulin and C-peptide on neointima formation (organ cultures), EC and SMC proliferation (cell counting), EC migration (scratch wound), SMC migration (Boyden chamber) and signalling (immunoblotting) were examined. A real-time RT-PCR array identified insulin-responsive genes, and results were confirmed by real-time RT-PCR. Targeted gene silencing (siRNA) was used to assess functional relevance. RESULTS: Insulin (100 nmol/l) augmented SV neointimal thickening (70% increase, 14 days), SMC proliferation (55% increase, 7 days) and migration (150% increase, 6 h); effects were abrogated by 10 nmol/l C-peptide. C-peptide did not affect insulin-induced Akt or extracellular signal-regulated kinase signalling (15 min), but array data and gene silencing implicated sterol regulatory element binding transcription factor 1 (SREBF1). Insulin (1-100 nmol/l) did not modify EC proliferation or migration, whereas 10 nmol/l C-peptide stimulated EC proliferation by 40% (5 days). CONCLUSIONS/INTERPRETATION: Our data support a causative role for insulin in human SV neointima formation with a novel counter-regulatory effect of proinsulin C-peptide. Thus, C-peptide can limit the detrimental effects of insulin on SMC function. Co-supplementing insulin therapy with C-peptide could improve therapy in insulin-treated patients

    MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales

    Get PDF
    Mathematical modeling and quantitative study of biological motility (in particular, of motility at microscopic scales) is producing new biophysical insight and is offering opportunities for new discoveries at the level of both fundamental science and technology. These range from the explanation of how complex behavior at the level of a single organism emerges from body architecture, to the understanding of collective phenomena in groups of organisms and tissues, and of how these forms of swarm intelligence can be controlled and harnessed in engineering applications, to the elucidation of processes of fundamental biological relevance at the cellular and sub-cellular level. In this paper, some of the most exciting new developments in the fields of locomotion of unicellular organisms, of soft adhesive locomotion across scales, of the study of pore translocation properties of knotted DNA, of the development of synthetic active solid sheets, of the mechanics of the unjamming transition in dense cell collectives, of the mechanics of cell sheet folding in volvocalean algae, and of the self-propulsion of topological defects in active matter are discussed. For each of these topics, we provide a brief state of the art, an example of recent achievements, and some directions for future research
    corecore