107 research outputs found
The number of amino acid residues in hydrophilic loops connecting transmembrane domains of the GABA transporter GAT-1 is critical for its function
AbstractTransporter proteins consist of multiple transmembrane domains connected by hydrophillic loops. As the importance of these loops in transport processes is poorly understood, we have studied this question using the cDNA coding for GAT-1, a Na+/Cl−-coupled γ-aminobutyric acid transporter from rat brain. Deletions of randomly picked non-conserved single amino acids in the loops connecting helices 7 and 8 or 8 and 9 result in inactive transport upon expression in HeLa cells. However, transporters where these amino acids are replaced with glycine retain significant activity. The expression levels of the inactive mutant transporters was similar to that of the wild-type, but one of these, ΔVal-348, appears to be defectively targetted to the plasma membrane. Our data are compatible with the idea that a minimal length of the loops is required, presumably to enable the transmembrane domains to interact optimally with each other
Recommended from our members
Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
Recommended from our members
Correction to: Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
The original version of this article unfortunately contained a mistake
Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
Recommended from our members
Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors.
The mushroom bodies, bilaterally symmetric regions in the insect brain, play a critical role in olfactory associative learning. Genetic studies in Drosophila suggest that plasticity underlying acquisition and storage of memory occurs at synapses on the dendrites of mushroom body Kenyon cells (Dubnau et al., 2001). Additional exploration of the mechanisms governing synaptic plasticity contributing to these aspects of olfactory associative learning requires identification of the receptors that mediate fast synaptic transmission in Kenyon cells. To this end, we developed a culture system that supports the formation of excitatory and inhibitory synaptic connections between neurons harvested from the central brain region of late-stage Drosophila pupae. Mushroom body Kenyon cells are identified as small-diameter, green fluorescent protein-positive (GFP+) neurons in cultures from OK107-GAL4;UAS-GFP pupae. In GFP+ Kenyon cells, fast EPSCs are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors (nAChRs). The miniature EPSCs have rapid rise and decay kinetics and a broad, positively skewed amplitude distribution. Fast IPSCs are mediated by picrotoxin-sensitive chloride conducting GABA receptors. The miniature IPSCs also have a rapid rate of rise and decay and a broad amplitude distribution. The vast majority of spontaneous synaptic currents in the cultured Kenyon cells are mediated byalpha-bungarotoxin-sensitive nAChRs or picrotoxin-sensitive GABA receptors. Therefore, these receptors are also likely to mediate synaptic transmission in Kenyon cells in vivo and to contribute to plasticity during olfactory associative learning
Recommended from our members
Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors.
The mushroom bodies, bilaterally symmetric regions in the insect brain, play a critical role in olfactory associative learning. Genetic studies in Drosophila suggest that plasticity underlying acquisition and storage of memory occurs at synapses on the dendrites of mushroom body Kenyon cells (Dubnau et al., 2001). Additional exploration of the mechanisms governing synaptic plasticity contributing to these aspects of olfactory associative learning requires identification of the receptors that mediate fast synaptic transmission in Kenyon cells. To this end, we developed a culture system that supports the formation of excitatory and inhibitory synaptic connections between neurons harvested from the central brain region of late-stage Drosophila pupae. Mushroom body Kenyon cells are identified as small-diameter, green fluorescent protein-positive (GFP+) neurons in cultures from OK107-GAL4;UAS-GFP pupae. In GFP+ Kenyon cells, fast EPSCs are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors (nAChRs). The miniature EPSCs have rapid rise and decay kinetics and a broad, positively skewed amplitude distribution. Fast IPSCs are mediated by picrotoxin-sensitive chloride conducting GABA receptors. The miniature IPSCs also have a rapid rate of rise and decay and a broad amplitude distribution. The vast majority of spontaneous synaptic currents in the cultured Kenyon cells are mediated byalpha-bungarotoxin-sensitive nAChRs or picrotoxin-sensitive GABA receptors. Therefore, these receptors are also likely to mediate synaptic transmission in Kenyon cells in vivo and to contribute to plasticity during olfactory associative learning
Recommended from our members
Nicotine-mediated activation of α2 nAChR-expressing OLM cells in developing mouse brains disrupts OLM cell-mediated control of LTP in adolescence.
Early postnatal nicotine exposure, a rodent model of smoking during pregnancy, affects hippocampal synaptic plasticity and memory. Here, we investigated the role of α2 nAChR-expressing OLM (α2-OLM) cells in LTP in unexposed and postnatal nicotine-exposed mice. We found that reduced α2 nAChR-dependent activation of OLM cells in α2 heterozygous knockout mice prevented LTP, whereas enhanced α2 nAChR-dependent activation of OLM cells in heterozygous knockin mice expressing hypersensitive α2 nAChRs facilitated LTP. Both optogenetic and chemogenetic activation of α2-OLM cells facilitated LTP as nicotine did. However, in postnatal nicotine-exposed mice, expressing chemogenetic hM3Dq receptors in α2-OLM cells, LTP was facilitated and both nicotinic and chemogenetic activation of α2-OLM cells prevented rather than facilitated LTP. These results demonstrate a critical role of α2-OLM cell activation in LTP as well as altered α2-OLM cell function in postnatal nicotine-exposed mice. To determine whether nicotine-mediated α2 nAChR activation in developing brains causes facilitated LTP and altered nicotinic modulation of LTP in adolescence, we used homozygous knockin mice expressing hypersensitive α2 nAChRs as a way to selectively activate α2-OLM cells. In the knockin mice, postnatal exposure to a low dose of nicotine, which had no effect on LTP in wild-type mice, is sufficient to cause facilitated LTP and altered nicotinic modulation of LTP as found in wild-type mice exposed to a higher dose of nicotine. Thus, the nicotine-mediated activation of α2 nAChRs on OLM cells in developing brains disrupts the α2-OLM cell-mediated control of LTP in adolescence that might be linked to impaired memory
Recommended from our members
GABA receptors containing Rdl subunits mediate fast inhibitory synaptic transmission in Drosophila neurons.
GABAergic inhibition in Drosophila, as in other insects and mammals, is important for regulation of activity in the CNS. However, the functional properties of synaptic GABA receptors in Drosophila have not been described. Here, we report that spontaneous GABAergic postsynaptic currents (sPSCs) in cultured embryonic Drosophila neurons are mediated by picrotoxin-sensitive chloride-conducting receptors. A rapid increase in spontaneous firing in response to bath application of picrotoxin demonstrates that these GABA receptors mediate inhibition in the neuronal networks formed in culture. Many of the spontaneous GABAergic synaptic currents are sodium action potential independent [miniature IPSCs (mIPSCs)] but are regulated by external calcium levels. The large variation in mIPSC frequency, amplitude, and kinetics properties between neurons suggests heterogeneity in GABA receptor number, location, and/or subtype. A decrease in the mean mIPSC decay time constant between 2 and 5 d, in the absence of a correlated change in rise time, demonstrates that the functional properties of the synaptic GABA receptors are regulated during maturation in vitro. Finally, neurons from the GABA receptor subunit mutant Rdl exhibit reduced sensitivity to picrotoxin blockade of the mIPSCs and resistance to picrotoxin-induced increases in spontaneous firing frequency. This demonstrates that Rdl containing GABA receptors play a direct role in mediating synaptic inhibition in Drosophila neural circuits formed in culture
Recommended from our members
GABA receptors containing Rdl subunits mediate fast inhibitory synaptic transmission in Drosophila neurons.
GABAergic inhibition in Drosophila, as in other insects and mammals, is important for regulation of activity in the CNS. However, the functional properties of synaptic GABA receptors in Drosophila have not been described. Here, we report that spontaneous GABAergic postsynaptic currents (sPSCs) in cultured embryonic Drosophila neurons are mediated by picrotoxin-sensitive chloride-conducting receptors. A rapid increase in spontaneous firing in response to bath application of picrotoxin demonstrates that these GABA receptors mediate inhibition in the neuronal networks formed in culture. Many of the spontaneous GABAergic synaptic currents are sodium action potential independent [miniature IPSCs (mIPSCs)] but are regulated by external calcium levels. The large variation in mIPSC frequency, amplitude, and kinetics properties between neurons suggests heterogeneity in GABA receptor number, location, and/or subtype. A decrease in the mean mIPSC decay time constant between 2 and 5 d, in the absence of a correlated change in rise time, demonstrates that the functional properties of the synaptic GABA receptors are regulated during maturation in vitro. Finally, neurons from the GABA receptor subunit mutant Rdl exhibit reduced sensitivity to picrotoxin blockade of the mIPSCs and resistance to picrotoxin-induced increases in spontaneous firing frequency. This demonstrates that Rdl containing GABA receptors play a direct role in mediating synaptic inhibition in Drosophila neural circuits formed in culture
- …