92 research outputs found

    Sparse Decomposition and Modeling of Anatomical Shape Variation

    Get PDF
    Recent advances in statistics have spawned powerful methods for regression and data decomposition that promote sparsity, a property that facilitates interpretation of the results. Sparse models use a small subset of the available variables and may perform as well or better than their full counterparts if constructed carefully. In most medical applications, models are required to have both good statistical performance and a relevant clinical interpretation to be of value. Morphometry of the corpus callosum is one illustrative example. This paper presents a method for relating spatial features to clinical outcome data. A set of parsimonious variables is extracted using sparse principal component analysis, producing simple yet characteristic features. The relation of these variables with clinical data is then established using a regression model. The result may be visualized as patterns of anatomical variation related to clinical outcome. In the present application, landmark-based shape data of the corpus callosum is analyzed in relation to age, gender, and clinical tests of walking speed and verbal fluency. To put the data-driven sparse principal component method into perspective, we consider two alternative techniques, one where features are derived using a model-based wavelet approach, and one where the original variables are regressed directly on the outcome

    Plasma cholesterol levels and brain development in preterm newborns.

    Get PDF
    BackgroundTo assess whether postnatal plasma cholesterol levels are associated with microstructural and macrostructural regional brain development in preterm newborns.MethodsSixty preterm newborns (born 24-32 weeks gestational age) were assessed using MRI studies soon after birth and again at term-equivalent age. Blood samples were obtained within 7 days of each MRI scan to analyze for plasma cholesterol and lathosterol (a marker of endogenous cholesterol synthesis) levels. Outcomes were assessed at 3 years using the Bayley Scales of Infant Development, Third Edition.ResultsEarly plasma lathosterol levels were associated with increased axial and radial diffusivities and increased volume of the subcortical white matter. Early plasma cholesterol levels were associated with increased volume of the cerebellum. Early plasma lathosterol levels were associated with a 2-point decrease in motor scores at 3 years.ConclusionsHigher early endogenous cholesterol synthesis is associated with worse microstructural measures and larger volumes in the subcortical white matter that may signify regional edema and worse motor outcomes. Higher early cholesterol is associated with improved cerebellar volumes. Further work is needed to better understand how the balance of cholesterol supply and endogenous synthesis impacts preterm brain development, especially if these may be modifiable factors to improve outcomes

    Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data

    Full text link
    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high‐resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable‐resolution Community Atmosphere Model (CAM) at two different resolutions (ΔX∼55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, ΔX∼38 km), and the ERA‐Interim Reanalysis (ERA‐I, ΔX∼80 km). The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA‐I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High‐resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold‐core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.Key PointsAn objective detection technique for tracking tropical cyclone extratropical transition in gridded climate data is describedObjectively calculated extratropical transition climatology in high‐resolution reanalyses closely match observational studiesTropical cyclones in CAM take too long to undergo extratropical transition highlighting model biases requiring further investigationPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136754/1/jame20355_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136754/2/jame20355.pd

    Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain

    Get PDF
    Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study

    Get PDF
    Background: The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. Methods: This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. Findings: Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17–43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32–3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08–1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47–8·05] and for hospital admission or emergency care attendance 1·58 [0·69–3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29–4·16] and 1·43 [1·04–1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low. Interpretation: This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant. Funding: Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore