26 research outputs found

    Comprehensive assessment of occupational exposure to microbial contamination in waste sorting facilities from Norway

    Get PDF
    The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by FCT-Fundação para a Ciência e a Tecnologia, I.P. (Portugal) for funding the EEA Grants Project-EXPOGreen FBR38 and by Polish Minister of Science and Higher Education, under the program "Regional Initiative of Excellence" in 2019-2022 (Grant No. 008/RID/2018/19). H&TRC authors gratefully acknowledge the FCT/MCTES national support through the UIDB/05608/2020 and UIDP/05608/2020 and the PhD Grant UI/BD/151431/2021. This work was supported by national funds through FCT/MCTES/FSE/UE, UI/BD/153746/2022 and CE3C unit UIDB/00329/2020 within the scope of a PhD Grant.Introduction: It is of utmost importance to contribute to filling the knowledge gap concerning the characterization of occupational exposure to microbial agents in the waste sorting setting (automated and manual sorting). Methods: This study intends to apply a comprehensive field sampling and laboratory protocol (culture-based methods and molecular tools), assess fungal azole resistance, as well as to elucidate potential exposure-related health effects (cytotoxicity analyses). Skin-biota samples (swabs) were performed on workers and controls to identify other exposure routes. Results: In personal filter samples the guidelines in one automated industry surpassed the guidelines for fungi. Seasonal influence on viable microbial contamination including fungi with reduced susceptibility to the tested azoles was observed, besides the observed reduced susceptibility of pathogens of critical priority (Mucorales and Fusarium sp.). Aspergillus sections with potential toxigenic effects and clinical relevance were also detected in all the sampling methods. Discussion: The results regarding skin biota in both controls´ and workers´ hands claim attention for the possible exposure due to hand-to-face/mouth contact. This study allowed the conclusion that working in automated and manual waste sorting plants implies high exposure to microbial agents.info:eu-repo/semantics/publishedVersio

    Hazard characterization of Alternaria toxins to identify data gaps and improve risk assessment for human health

    Get PDF
    Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.The European Partnership for the Assessment of Risks from Chemicals has received funding from the European Union’s Horizon Europe research and innovation program under Grant Agreement No 101057014 and has received co-funding of the authors’ institutions. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the Health and Digital Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.info:eu-repo/semantics/publishedVersio

    Comprehensive assessment of occupational exposure to microbial contamination in waste sorting facilities from Norway

    Get PDF
    IntroductionIt is of upmost importance to contribute to fill the knowledge gap concerning the characterization of the occupational exposure to microbial agents in the waste sorting setting (automated and manual sorting).MethodsThis study intends to apply a comprehensive field sampling and laboratory protocol (culture based-methods and molecular tools), assess fungal azole resistance, as well as to elucidate on potential exposure related health effects (cytotoxicity analyses). Skin-biota samples (eSwabs) were performed on workers and controls to identify other exposure routes.ResultsIn personal filter samples the guidelines in one automated industry surpassed the guidelines for fungi. Seasonal influence on viable microbial contamination including fungi with reduced susceptibility to the tested azoles was observed, besides the observed reduced susceptibility of pathogens of critical priority (Mucorales and Fusarium sp.). Aspergillus sections with potential toxigenic effect and with clinical relevance were also detected in all the sampling methods.DiscussionThe results regarding skin-biota in both controls´ and workers´ hands claim attention for the possible exposure due to hand to face/mouth contact. This study allowed concluding that working in automated and manual waste sorting plants imply high exposure to microbial agents

    New approach methodologies to enhance human health risk assessment of immunotoxic properties of chemicals: a PARC (Partnership for the Assessment of Risk from Chemicals) project

    Get PDF
    As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC)

    New approach methodologies to enhance human health risk assessment of immunotoxic properties of chemicals — a PARC (Partnership for the Assessment of Risk from Chemicals) project

    Get PDF
    As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC)

    Eksponering for allergener fra rotte og mus. Forekomst av og determinanter for luftbårne allergener i norske forsøksdyravdelinger

    No full text
    Arbeid med laboratoriedyr er en velkjent risikofaktor for flere allergiske lidelser. Typiske luftveissymptomer inkluderer allergisk betennelse i neseslimhinnen, øyekatarr og astma, mens elveblest (urtikaria) er den vanligste hudreaksjonen. Jo mer kontakt man har med dyrene, desto større sannsynlighet er det for helseplager. Det er rapportert at 10-30 % av dyrestallarbeidere utvikler allergi mot rotte eller mus, hvilket er langt høyere enn det man kan finne i andre yrkesgrupper som bakere eller tannteknikere. Mellom 5 og 40 % utvikler allergi i løpet av det første året. Mus og rotter er mer allergene enn andre dyrearter. Hovedallergenene hos rotter (Rat n1) og mus (Mus m1) kan gjenfinnes i hår, flass og urin, og bæres hovedsakelig av partikler på 3-10 μm aerodynamisk diameter. Allergennivåene som gir helseplager varierer betydelig avhengig av individuell sårbarhet, og det er derfor vanskelig å sette en yrkesbasert grenseverdi for allergener i luft. Det er viktig å tilstrebe lavest mulig eksponering og det viktigste bidraget denne rapporten har er å identifisere hvilke arbeidsforhold eller – rutiner som gir høyest eller lavest mulig risiko for eksponering for allergener fra forsøksdyrene. Med basis i eksisterende aktivitet og rutiner i norske dyrestaller har denne rapporten vist at forsøk, operasjon, blodprøvetaking i lab/operasjonsrom gir lavest eksponering, mens burtømming og burvask i burvaskerommene gir høyest eksponering. Av flere ulike arbeidsoppgaver i dyrerom gir burskift den høyeste eksponeringen. Bur av type IVC negativ og positiv, samt IVC burstablesystem bidro til å redusere eksponeringsnivået i dyrerom, mens åpne bur og burstablesystem med åpne hyller og skyvedører bidro til en sterk økning av Rat n1 eksponeringen. Dette er i tråd med det vi vet fra litteraturen der IVC-system dras frem som viktig eksponeringsreduserende tiltak. Bruk av IVC-bur samt stable system med åpne hyller og skyvedører var imidlertid det som økte eksponeringen i burvaskerommene. Det anbefales å være bevisst på hva som kan gi uunngåelig forhøyet eksponering, og ta forholdsregler, samt gå gjennom rutiner for å se om eksponeringen kan reduseres, spesielt ved burskift, burtømming og burvasking. Dette kan for eksempel være rutiner som å holde bur lukket til hvert enkelt skal tømmes i tømmestasjonen, støvsuge i stedet for å koste, benytte LAF-benk ved forsøk i den grad det er mulig, samt påse at luftstrømmen forblir laminær ved arbeid i LAF-benk

    Work Tasks as Determinants of Grain Dust and Microbial Exposure in the Norwegian Grain and Compound Feed Industry

    No full text
    OBJECTIVES: The grain and compound feed industry entails inevitable risks of exposure to grain dust and its microbial content. The objective of this study was therefore to investigate task-dependent exposure differences in order to create knowledge basis for awareness and exposure reducing measures in the Norwegian grain and compound feed industry. METHODS: A total of 166 samples of airborne dust were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified and used as individual outcomes in mixed models with worker nested in company as random effect and different departments and tasks as fixed effects. RESULTS: The exposure levels were highest in grain elevator departments. Exposure to endotoxins was particularly high. Tasks that represented the highest and lowest exposures varied depending on the bioaerosol component. The most important determinants for elevated dust exposure were cleaning and process controlling. Cleaning increased the dust exposure level by a factor of 2.44 of the reference, from 0.65 to 1.58mg m(-3), whereas process controlling increased the dust exposure level by a factor of 2.97, from 0.65 to 1.93mg m(-3). Process controlling was associated with significantly less grain dust exposure in compound feed mills and the combined grain elevators and compound feed mills, than in grain elevators. The exposure was reduced by a factor of 0.18 and 0.22, from 1.93 to 0.34mg m(-3) and to 0.42mg m(-3), respectively, compared with the grain elevators. Inspection/maintenance, cleaning, and grain rotation and emptying were determinants of higher exposure to both endotoxin and β-1→3-glucans. Seed winnowing was in addition a strong determinant for endotoxin, whereas mixing of animal feed implied higher β-1→3-glucan exposure. Cleaning was the only task that contributed significantly to higher exposure to bacteria and fungal spores. CONCLUSION: Cleaning in all companies and process controlling in grain elevators were the strongest determinants for overall exposure, whereas seed winnowing was a particular strong determinant of endotoxin exposure. Exposure reduction by technical intervention or personal protective equipment should therefore be considered at work places with identified high exposure tasks

    Circulating miRNAs as molecular markers of occupational grain dust exposure

    No full text
    Dust from grain and feed production may cause adverse health effects in exposed workers. In this study we explored circulating miRNAs as potential biomarkers of occupational grain dust exposure. Twenty-two serum miRNAs were analyzed in 44 grain dust exposed workers and 22 controls. Exposed workers had significantly upregulated miR-18a-5p, miR-124-3p and miR-574-3p, and downregulated miR-19b-3p and miR-146a-5p, compared to controls. Putative target genes for the differentially expressed miRNAs were involved in a range of Kyoto Encyclopedia of Genes and Genomes signaling pathways, and ‘Pathways in cancer’ and ‘Wnt signaling pathway’ were common for all the five miRNAs. MiRNA-diseases association analysis showed a link between the five identified miRNAs and several lung diseases terms. A positive correlation between miR-124-3p, miR-18a-5p, and miR-574-3p and IL-6 protein level was shown, while miR-19b-3p was inversely correlated with CC-16 and sCD40L protein levels. Receiver-operating characteristic analysis of the five miRNA showed that three miRNAs (miR-574-3p, miR-124-3p and miR-18a-5p) could distinguish the grain dust exposed group from the control group, with miR-574-3p as the strongest predictor of grain dust exposure. In conclusion, this study identified five signature miRNAs as potential novel biomarkers of grain dust exposure that may have potential as early disease markers

    Work Tasks as Determinants of Grain Dust and Microbial Exposure in the Norwegian Grain and Compound Feed Industry

    No full text
    OBJECTIVES: The grain and compound feed industry entails inevitable risks of exposure to grain dust and its microbial content. The objective of this study was therefore to investigate task-dependent exposure differences in order to create knowledge basis for awareness and exposure reducing measures in the Norwegian grain and compound feed industry. METHODS: A total of 166 samples of airborne dust were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified and used as individual outcomes in mixed models with worker nested in company as random effect and different departments and tasks as fixed effects. RESULTS: The exposure levels were highest in grain elevator departments. Exposure to endotoxins was particularly high. Tasks that represented the highest and lowest exposures varied depending on the bioaerosol component. The most important determinants for elevated dust exposure were cleaning and process controlling. Cleaning increased the dust exposure level by a factor of 2.44 of the reference, from 0.65 to 1.58mg m(-3), whereas process controlling increased the dust exposure level by a factor of 2.97, from 0.65 to 1.93mg m(-3). Process controlling was associated with significantly less grain dust exposure in compound feed mills and the combined grain elevators and compound feed mills, than in grain elevators. The exposure was reduced by a factor of 0.18 and 0.22, from 1.93 to 0.34mg m(-3) and to 0.42mg m(-3), respectively, compared with the grain elevators. Inspection/maintenance, cleaning, and grain rotation and emptying were determinants of higher exposure to both endotoxin and β-1→3-glucans. Seed winnowing was in addition a strong determinant for endotoxin, whereas mixing of animal feed implied higher β-1→3-glucan exposure. Cleaning was the only task that contributed significantly to higher exposure to bacteria and fungal spores. CONCLUSION: Cleaning in all companies and process controlling in grain elevators were the strongest determinants for overall exposure, whereas seed winnowing was a particular strong determinant of endotoxin exposure. Exposure reduction by technical intervention or personal protective equipment should therefore be considered at work places with identified high exposure tasks
    corecore