2,491 research outputs found

    Early warning signal for interior crises in excitable systems

    Full text link
    The ability to reliably predict critical transitions in dynamical systems is a long-standing goal of diverse scientific communities. Previous work focused on early warning signals related to local bifurcations (critical slowing down) and non-bifurcation type transitions. We extend this toolbox and report on a characteristic scaling behavior (critical attractor growth) which is indicative of an impending global bifurcation, an interior crisis in excitable systems. We demonstrate our early warning signal in a conceptual climate model as well as in a model of coupled neurons known to exhibit extreme events. We observed critical attractor growth prior to interior crises of chaotic as well as strange-nonchaotic attractors. These observations promise to extend the classes of transitions that can be predicted via early warning signals.Comment: 6 pages, 4 figure

    Memory equations as reduced Markov processes

    Get PDF
    A large class of linear memory differential equations in one dimension, where the evolution depends on the whole history, can be equivalently described as a projection of a Markov process living in a higher dimensional space. Starting with such a memory equation, we give an explicit construction of the corresponding Markov process. From a physical point of view the Markov process can be understood as the change of the type of some quasiparticles along one-way loops. Typically, the arising Markov process does not have the detailed balance property. The method leads to a more realisitc modeling of memory equations. Moreover, it carries over the large number of investigation tools for Markov processes to memory equations, like the calculation of the equilibrium state, the asymptotic behavior and so on. The method can be used for an approximative solution of some degenerate memory equations like delay differential equations

    Modeling of drift-diffusion systems

    Get PDF
    We derive drift-diffusion systems describing transport processes starting from free energy and equilibrium solutions by a unique method. We include several statistics, heterostructures and cross diffusion. The resulting systems of nonlinear partial differential equations conserve mass and positivity, and have a Lyapunov function (free energy). Using the inverse Hessian as mobility, non-degenerate diffusivity matrices turn out to be diagonal, or - in the case of cross diffusion - even constant

    A mathematical framework for general classical systems and time irreversibility as its consequence

    Get PDF
    It is well known that important models in statistical physics like the Fokker-Planck equation satisfy an H-theorem, i.e., have a decreasing Lyapunov function (or increasing entropy). This illustrates a symmetry break in time and reflects the second law of thermodynamics. In this paper, we show that any physically reasonable classical system has to have this property. For this purpose, we develop an abstract mathematical framework based on the theory of compact topological spaces and convex analysis. Precisely, we show: 1) Any statistical state space can be described as the convex hull of the image of the canonical embedding of the bidual space of its deterministic state space (a compact topological Hausdorff space). 2) The change of any statistical state is effected by the adjoint of a Markov operator acting in the space of observables. 3) Any Markov operator satisfies a wide class of inequalities, generated by arbitrary convex functions. As a corollary, these inequalities imply a time monotone behavior of the solution of the corresponding evolution equations. Moreover, due to the general abstract setting, the proof of the underlying inequalities is very simple and therefore illustrates, where time symmetry breaks: A model is time reversible for any states if and only if the corresponding Markov operator is a deterministic one with dense range. In addition, the proposed framework provides information about the structure of microscopic evolution equations, the choice of the best function spaces for their analysis and the derivation of macroscopic evolution equations

    Inequalities for Markov operators, majorization and the direction of time

    Get PDF
    In this paper, we connect the following partial orders: majorization of vectors in linear algebra, majorization of functions in integration theory and the order of states of a physical system due to their temporal-causal connection. Each of these partial orders is based on two general inequalities for Markov operators and their adjoints. The first inequality compares pairs composed of a continuous function (observables) and a probability measure (statistical states), the second inequality compares pairs of probability measure. We propose two new definitions of majorization, related to these two inequalities. We derive several identities and inequalities illustrating these new definitions. They can be useful for the comparison of two measures if the Radon-Nikodym Theorem is not applicable. The problem is considered in a general setting, where probability measures are defined as convex combinations of the images of the points of a topological space (the physical state space) under the canonical embedding into its bidual. This approach allows to limit the necessary assumptions to functions and measures. In two appendices, the finite dimensional non-uniform distributed case is described, in detail. Here, majorization is connected with the comparison of general piecewise affine convex functions. Moreover, the existence of a Markov matrix, connecting two given majorizing pairs, is shown
    corecore