
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

Inequalities for Markov operators, majorization and the direction of time

Holger Stephan 

submitted: December 12, 2013

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: holger.stephan@wias-berlin.de

No. 1896

Berlin 2013

2010 Mathematics Subject Classification. 54C45,60J05,15B51,82C03.

Key words and phrases. function-measure-duality, general classical physical system, Jensen’s inequality, rearrangements of functions,
stochastic matrix, Robin-Hood method .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289298776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

In this paper, we connect the following partial orders: majorization of vectors in linear alge-

bra, majorization of functions in integration theory and the order of states of a physical system

due to their temporal-causal connection.

Each of these partial orders is based on two general inequalities for Markov operators and

their adjoints. The �rst inequality compares pairs composed of a continuous function (observ-

ables) and a probability measure (statistical states), the second inequality compares pairs of

probability measure. We propose two new de�nitions of majorization, related to these two in-

equalities. We derive several identities and inequalities illustrating these new de�nitions. They

can be useful for the comparison of two measures if the Radon-Nikodym Theorem is not appli-

cable.

The problem is considered in a general setting, where probability measures are de�ned as

convex combinations of the images of the points of a topological space (the physical state space)

under the canonical embedding into its bidual. This approach allows to limit the necessary

assumptions to functions and measures.

In two appendices, the �nite dimensional non-uniform distributed case is described, in detail.

Here, majorization is connected with the comparison of general piecewise a�ne convex functions.

Moreover, the existence of a Markov matrix, connecting two given majorizing pairs, is shown.
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4 1 INTRODUCTION

1 Introduction

Time is a natural partial order of physical states. According to the second law of thermo-
dynamics, a generic physical process increases entropy and is therefore time irreversible. This
means there is an inequality between the entropy of a physical system before and after a change
of state.
From a mathematical point of view this is reflected by inequalities for Markov operators, de-
scribing the physical process. These inequalities define an partial order between the objects
before and after the action of such operators.
A further partial order well known in mathematics is majorization. Classical majorization
theory has at least two origins, majorization of two finite dimensional vectors in linear algebra
and majorization of the rearrangements of two functions in integration theory in Euclidian
spaces. In linear algebra, this partial order is generated by the action of a doubly stochastic
matrix.
The similarity of these partial orders is well known. A vector or function is majorized by
another if it is less spread out. The same goes for the example of states during a diffusion
process in a homogeneous random matter – a typical irreversible physical process. The solution
operators of the corresponding diffusion equation are Markov operators or their adjoints.
Clausius defined a physical process as irreversible if it is impossible to invert this process.
However, it is found that a general physical process can be more complicated. If a state is
attainable from another by a physical process, in general, the inverse process is possible, too.
Generally, irreversibility holds for a pair of objects, only.
More precisely: We have two natural order relations. The first compares pairs composed of an
observable and a state, the second compares pairs of states. (Note that these are orderings on
the spaces of pairs, not between two elements of a pair.)
If, for example, a physical process transforms a pair of two states into another pair of two states,
then there is no physical process transforming the states into the reverse direction (unless it is
a deterministic process).
This is reflected by two general inequalities for Markov operators and their adjoints. The
first inequality compares pairs composed of a continuous function and a measures, the second
inequality compares pairs of two measures.
In [15] it was shown that the state change of a general classical physical system (GCPS) can
be described by the action of Markov operators and their adjoints. This allows to describe
irreversibility of GCPS by means of such inequalities.
Classical majorization theory is an partial order between two objects (two vectors or two func-
tions), not between two pairs. This corresponds to the case in which we consider two pairs of
states, implicitly assuming one of the states to be the equilibrium state of the process.
In this paper, we propose a generalization of the concept of majorization, corresponding to the
order of physical processes by time based on the fundamental asymmetry – before and after
the action of a Markov operator. The mathematical background for this asymmetry of Markov
operators are inequalities of some entropy functionals which are consequences of Jensen’s in-
equality satisfied by any Markov operator. There are two fundamental entropy functionals,
each depending on a pair of objects. One depends on a pair composed of a continuous function
and a probability measure, the other depends on a pair of probability measures.
In [15] it was shown that the modeling of GCPS leads to a special mathematical framework.
This framework has been developed by Kaplan in his two books [7, 8]. It is a general approach
to functional analysis, based on the concept of duality of ordered spaces. The main connection
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to physics is the definition of probability measures (statistical states) as convex combinations
of the images of the states under the canonical embedding of a topological space (state space)
into its bidual. This setting describes intensive (observables, continuous functions) and exten-
sive (states, probability measures) values together in one picture, but as different sides of the
underlying duality.
The two entropy functionals generalize the classical notion of majorization. Moreover, the
functional of two measures can be treated as some “extension” of the Radon-Nikodym Theorem.
It turns out that “the rearrangement of the density” of one measure with respect to another
exists even if there is no density, i.e. if the Radon-Nikodym Theorem fails. Furthermore, the
explicitly given expression allows to use this “density” in applications, whereas the Radon-
Nikodym Theorem is, in general, not constructive unless the density is a continuous function.
Due to the fact that Markov operators are solution operators to a wide class of evolution
equations, the proved theorems can be applied to show contractivity of its solutions and global
solvability. This can also help to understand their large time behavior. Here, the functionals
can be treated as Lyapunov functions and the corresponding inequalities are an expression of
their monotonicity.

The paper is organized as follows: In subsection 1.1, we collect the main definitions of the used
mathematical objects like function spaces, probability measures and Markov operators.
In subsection 1.2, we briefly describe the physical meaning of the introduced objects and the
time direction of the action of Markov operators and their adjoints.
In section 2, we define the main functionals, depending on an arbitrary convex function, and
show their monotone behavior under the action of Markov operators.
Section 3 is devoted to majorization theory. In subsection 3.1 and 3.2, we collect some facts on
the classical majorization theory. In subsection 3.3 we propose our new definition of majoriza-
tion. In the following subsections we consider the main functionals for a special family of convex
functions. This allows to transform Lebesgue integrals into Riemann integrals, which are often
easier to handle. Moreover, we derive several helpful identities and inequalities. They them be
useful for the comparison of two measures if the Radon-Nikodym Theorem is not applicable.
In Appendix A, we explain the main objects and theorems in the important case of a finite
number of states. Here, majorization is connected with the comparison of general piecewise
affine convex functions. Explicitely, we consider the non-uniform case. This is a generalization
of the case well known in finite dimensional linear algebra.
In Appendix B, we construct a Markov matrix from given majorizated pairs. Here, measures
are restricted to vectors of rational numbers.



6 1 INTRODUCTION

1.1 Notations

We follow here the concept introduced by S. Kaplan in his two books [7, 8]. In particular, we
consider the connection between a topological space and its bidual as essential link between
points (state) and probability measures (statistical states). Kaplan’s concept turns out to be
the natural way of modeling GCPS [15].

1.1.1 The function spaces

The following setting defines functions and measures on a general topological space.

• Z is a compact topological Hausdorff space (e.g., a polish space).

• C(Z) is the Banach lattice of real valued continuous functions on Z. It is the topological
dual Z∗ of Z. A function g ∈ C is called positive if g(z) ≥ 0 for z ∈ Z.

• C∗(Z) is the dual space of C(Z), the space of radon measures on Borel sets B(Z) of Z. It
is the topological bidual Z∗∗ of Z. A measure p ∈ C∗ is called positive if p(B) ≥ 0 for
B ∈ B.

• 〈·, ·〉 denote the dual product in C(Z)×C∗(Z), 〈g, p〉 =
∫

Z
g(z)p(dz), g ∈ C, p ∈ C∗. p ≥ 0

is equivalent to 〈g, p〉 ≥ 0 for g ≥ 0.

• S∗(Z) ⊂ C∗(Z) is the convex set of positive and normalized radon measures, i.e., proba-
bility measures S∗(Z) = {p ∈ C∗(Z)|p ≥ 0, ‖p‖ = 1}. S∗(Z) is the unit sphere (simplex)
of C∗(Z).

• The set of extremal elements, S∗e(Z) = extrS∗(Z), is the set of point measures S∗e(Z) =
{δz ∈ C∗(Z)|z ∈ Z}.

• C∗∗(Z) is the bidual, of C(Z). It contains the set of all bounded measurable functions
CB(Z) the space of continuous functions on Z equipped with the topology generated by
all Borel sets of Z.

• 〈·, ·〉∗ denote the dual product in C∗∗(Z)× C∗(Z). 〈ξ, p〉∗ =
∫

Z
ξ(z)p(dz), ξ ∈ C∗∗, p ∈ C∗.

The image of the canonical embedding i of Z in its bidual Z∗∗ = C∗(Z) is the set of point
measures S∗e(Z). We have iz = δz. Thus, probability measures are the elements of the weak*
closure of the convex hull of the image of the canonical embedding of some topological space
in its bidual S∗(Z) = conv{δz|z ∈ Z}

∗
.

In this sense we can understood C(Z) as the Banach space of continuous functions on the
extremal elements of the unit sphere of its own dual space C(Z) = C(S∗e(Z)). This connection

Z
dual
−−→ C(Z)

dual
−−→ C

∗(Z)
sphere
−−→ S

∗(Z)
extr
−−→ S

∗
e(Z) = Z

gives the construction a solid structure and simplifies the technical problems.
The elements of the spaces are of two types: functions of points like the elements of C(Z) or
C∗∗(Z) and functions of sets like the elements of C∗(Z). Inspired by the concepts in physics we
call these objects intensive and extensive, resp.
We introduce some more notations:

•  ∈ C(Z) is the constant function  (z) = 1, z ∈ Z
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•  B ∈ CB(Z) is the indicator function  B(z) = 1, z ∈ B, = 0 otherwise.  B(z) = δz(B),
z ∈ Z, B ∈ B.

• zmin ∈ Argminz∈Zg(z), zmax ∈ Argmaxz∈Zg(z)

• gmin = g(zmin), gmax = g(zmax).

• gp = 〈g, p〉, the mean value of g with respect to p

• g+ = sup{g, 0}, g− = sup{−g, 0}.

• C[a,b] is the band of such functions g with [gmin, gmax] ⊂ [a, b].

As usual, if there is no confusion, we omit Z and write C, S∗, ... instead of C(Z), S∗(Z), ...

1.1.2 Markov operators

• A Markov operator M : C(Z)−→ C(Z) is a bounded linear, positivity and  conserving
operator. We denote the set of Markov operator by M

M = {M ∈ L(C) | M ≥ 0, M =  }

• The adjoint of a Markov operator M∗ : C∗(Z)−→ C∗(Z) is defined by 〈Mg, p〉 = 〈g,M∗p〉
and is a bounded linear and probability measure conserving operator: M∗S∗(Z) ⊂ S∗(Z).
The adjoint of a bounded linear operator maps probability measure into itself if and only
if it is the adjoint of a Markov operator. Note, that a bounded linear operator in C∗(Z)
must not have a pre-adjoint one.

• The adjoint of a Markov operator has a adjoint, defined by 〈ξ,M∗p〉∗ = 〈M∗∗ξ, p〉∗. M is
the restriction of M∗∗ on C.

• A Markov operator can be described by a weak* continuous family pz ∈ S∗(Z). We have
(Mg)(z) = 〈g, pz〉. Thus, Markov operators provide convex combinations.

Markov operators and its adjoints have an integral representation

(Mg)(z) =

∫

Z

g(z′)ω(z, dz′) = 〈g, ωz〉

(M∗p)(B) =

∫

Z

ω(z′, B)p(dz′) = 〈ωB, p〉

with a kernel ω : Z×B(Z)−→ [0, 1].

• Every adjoint of a Markov operator has a fixed-point (or invariant measure) µ ∈ S∗ with
M∗µ = µ (Theorem of Frobenius-Perron-Krein-Rutman).

• A Markov operator is band conserving: MC[a,b] ⊂ C[a,b]. Thus, they satisfy the following
maximum principle:

g− ≤ g ≤ g+ =⇒ g− ≤Mg ≤ g+

The maximum principle is a characterization of Markov operators.
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• Given a continuous function γ : Z−→ Z, the composition operator Mγg = g◦γ is a Markov
operator and is called deterministic Markov operator. Its adjoint maps point measures
into itself: M∗

γS
∗
e ⊂ S∗e. More precisely, M∗

γδz = δγ(z). In this sense, such an operator is
deterministic. It is the image of γ by means of the canonical embedding of Z into Z∗∗.

For general measures p ∈ S we have (M∗
γp)(B) = p(γ−1(B)).

In the finite, n-dimensional case, the set of deterministic Markov operators (matrices)
consists of nn matrices with one 1 in each row. This are the extremal points of the convex
set of Markov operators.

In the general case, the set of deterministic Markov operators are not the extremal points
of the set of Markov operators. There can be only one extremal points of this set, the
identity I.

• If a Markov operator M has an inverse M−1, is has to be a deterministic one. We have
M−1

γ = Mγ−1 if the continuous function γ : Z−→ Z has a continuous inverse γ−1.

In the n-dimensional case, the set of invertible deterministic Markov operators consists
of n! matrices with one 1 in each row and each column – the representation of the per-
mutation group on Z.

In general, Markov operators can act from one Banach lattice into another. The state spaces
before and after a state change must not be the same. If they are different, say Z1 (before) and
Z2 (after), the corresponding spaces of observables are C(Z1) and C(Z2) and a Markov operator
M is a linear bounded operator acting form C(Z1) into C(Z2). In this case positivity conserving
means g ≥1 0 =⇒ (Mg) ≥2 0 and 1-preserving means M 1 =  2, where ≥1,2 are the
corresponding partial orders and  1,2 are the corresponding unities. We will not unnecessarily
complicate the notation and assume in the following Markov operators, acting in the same
space. Nevertheless, what follows is true in the general case except, obviously, the existence of
an invariant measure and the case, when the Markov operator is the solution operator to an
evolution equations. This general situation covers the important case of rectangular matrices.
In Appendix B we note, how this general situation is to be handled.

1.1.3 Operators, connecting objects of different types

There are some important operations, connecting extensive and intensive values.

For a probability measure p ∈ S∗, we define the multiplication operator Qp : C(Z)−→ C∗(Z)
acting as

(Qpg)(B) =

∫

B

g(z)p(dz), g ∈ C, B ∈ B(Z)

Qp can be represented as an integral operator with kernel p(B ∩B′). (Note that this operator
cannot be defined between different spaces C(Z1) and C∗(Z2).)

The inverse of Qp, the operator Q−1
p : C∗−→ C, is in general an unbounded operator and is the

restriction of the Radon-Nikodym operator to C, Q−1
p q = dq

dp
.

The operator Q−1
p acting on q defines an intensive value Q−1

p q from a pair (q, p) of extensive
values. This is the typical way in physics to construct a value, defined at states from two values
that can be measured by counting (e.g., velocity from covered distance and elapsed time).
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For a functional Φ : C−→ R̄ we define its convex conjugate Φ∗ : C∗−→ R̄ via the Legendre-Fenchel
transform (see [3])

Φ∗(p) = sup
g∈C

(

〈g, p〉 − Φ(g)
)

We have Youngs inequality

Φ∗(p) + Φ(g) ≥ 〈g, p〉

with equality if p is in the subdifferential of Φ at g: p ∈ ∂Φ(g) or reverse, g ∈ ∂Φ∗(p).
The Legendre-Fenchel transform is the typical way in physics to construct a value of dual type
from a given value (e.g., momentum from velocity).

1.2 Physical background of the objects

The elements of the main spaces Z, C and S∗ have important meanings for GCPS (see [15]). Z

is the set of states, the state space. C is the set of observables and S∗ is the set of statistical
states.
Moreover, the elements of C, functions of points can be understood as intensive values, whereas
the elements of S∗, positive and additive functions of sets can be understood as extensive values.
S∗ describes the real physical objects, whereas the elements of C are auxiliary objects and the
names differ (e.g., potentials, densities, information, test functions), depending on the area of
knowledge where they are used.
We use observables to decide, whether the system is in some state or not.  B observes, whether
the system is in a state from B or not. If an observable g coincides on two states, say g(z1) =
g(z2) for some z1, z2 ∈ Z, the observable g is not able to distingwish them. For a fiven g, its
range consists of all information about the observation. Detailed information about the state
space is lost.
A probability measure is a mixed state, the weak* closure of convex combinations of pure states.
Probabilities come into the play if the same experiment can give different results. The dual
product 〈g, p〉 is the expected value of the observable g.
Using densities (intensive values) instead of measures (extensive values), the real type of the
object changes. As a result, it can behave in a different way as expected (see the next subsub-
sections).
We have to consider Markov operators instead of deterministic Markov operators, because of
the uncertainty of a state change. We treat here uncertainty in an epistemic sense – uncertainty
due to incomplete knowledge. A Markov operator provides a sensible physical process. The
adjoint of a non-markovian operator maps some probability measures out of the set S∗. The
result of such an action can not be understood in a physical sense.
The kernel ω(z,B) of a Markov operator is the probability to find the system after the state
change in a state from B if it was before in the state z with certainty. The invariant measure
of a Markov operator is called equillibrium state.

1.2.1 Markov operators and direction of time

We understand time as a parameter of order, defining the causal order of successive states. In
this sense, the notion of time can be replaced by any other ordering parameter like the step in
an iteration scheme or a control parameter of a device.
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This treatment is in contrast to the understanding of time in classical mechanics as the contin-
uous parameter, parameterizing the trajectory of a particle or body.
In what follows, we consider two time points t and t′ > t, calling the states at these points of
time “before” and “after”. We define the order of physical processes – the action of the adjoint
of a Markov operator – as “time running forward” as it is intuitively understood.
Then, the action of a Markov operator is a step backwards in time, g = Mg′; whereas the
action of the adjoint of a Markov operator is a step forwards in time, p′ = M∗p. The dual
product taken at different points of time is conserved:

〈g′, p′〉 = 〈g′,M∗p〉 = 〈Mg′, p〉 = 〈g, p〉

The backward or forward directed action of Markov operators and their adjoints is well known
from evolution equations in probability theory. The solution operators of the Kolmogorov–
Chapman backward equation are Markov operators, whereas the solution operators of the
Kolmogorov–Chapman forward equation are adjoints of Markov operators (see, e.g., [11]).
Since a Markov operator is band conserving, MC[a,b] ⊂ C[a,b], an observation before is “less
spread out” or “less detailed” than afterwards. An observation becomes “clearer” in time.
A deterministic Markov operator Mγ is an abstract pullback operator. Its adjoint M∗

γ is an
abstract pushforward operator, well known, for example, in optimal transport theory in which
it is written as M∗

γp = γ#p.

1.2.2 Reverse physical processes and densities

The density of one probability measure with respect to another is an intensive value. It is
interesting how it is mapped, if the measure is mapped forward in time by the adjoint of a
Markov operator M∗. Let p, q ∈ S∗, p′ = M∗p and q′ = M∗q. We define densities h = Q−1

p q

and h′ = Q−1
p′ q′, assuming them to exist and to be continuous.

We define an operator X = Q−1
p′ M∗Qp and assume that this is a bounded linear operator in C.

We do not analyze the assumptions on M and p to be sure that X is a well defined bounded
linear operator in C (see subsection 3.6). In simple situations this is the case (e.g. in case of a
finite Z with strict positive p and mixing M, see Appendix A and B).
Obviously, X ≥ 0 and we have

X = Q−1
p′ M∗Qp = Q−1

p′ M∗p = Q−1
p′ p′ =  .

Hence, X is a Markov operator. Moreover, we have

Xh = Q−1
p′ M∗Qph = Q−1

p′ M∗q = Q−1
p′ q′ = h′ ,

X∗p′ = QpM
∗∗Q−1

p′ p′ = QpM
∗∗
 = Qp = p .

Thus, X maps h to h′, at first glance forward in time, but being a Markov operator and not the
adjoint, this is the inverse time direction. Undoubtedly, this behavior does not invert the time,
but the physical process. X∗ is an action forward in time, but it models the inverse physical
process. Hence, for X p is the state after and p′ before.
If one wants to describe the evolution using densities, one has to take the inverse physical
process and backwards running time (see subsubsection 2.1.3).
The case X = M, i.e. if a Markov operator M and a state p satisfy Qp′M = M∗Qp, describes
an invertible physical process. The special case, when p = µ is an invariant measure of M∗, the
operator M is called a detailed balance operator and the underlying process is called reversible.
Note, this does not mean time reversiblity. A reversible process is time irreversible as well in
the sense that corresponding entropy functionals are monotone in time.
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2 Inequalities for Markov operators

Any Markov operator satisfies a wide class of simple inequalities. Some of them are consequences
of Jensen’s inequality.

2.1 The main functionals

We define two real valued functionals. Each of them depends on a pair of objects, on C × S∗

and S∗ × S∗.

H[g, p] = 〈F (g), p〉, g ∈ C, p ∈ S
∗ (1)

H∗[q, p] = sup
g∈C

(

〈g, q〉 − 〈F (g), p〉
)

, p, q ∈ S
∗ (2)

It is easy to show that H∗[q, p] ≥ H∗[p, p] = F ∗(1) (see [14]).
The importance of these functionals is in their asymmetry with respect to the action of a
Markov operator shown in Theorem 2. This asymmetry is the key for the new definitions of
majorization.

2.1.1 Convexity of the main functionals

Obviously, H[g, ·] is linear on S∗. Moreover, we have

Theorem 1

(i) H[·, p] is convex on C

(ii) H∗[·, p] is convex on S∗

(iii) H∗[q, ·] is convex on S∗

Proof:

(i) This is a simple consequence of the convexity of F and the positivity of p.

(ii) We set α1,2 ∈ [0, 1] with α1 + α2 = 1. Then, we have

〈g, α1q1 + α2q2〉 − 〈F (g), p〉 = α1

(

〈g, q1〉 − 〈F (g), p〉
)

+ α2

(

〈g, q2〉 − 〈F (g), p〉
)

Applying sup
g∈C

, it follows

sup
g∈C

(

〈g, α1q1 + α2q2〉 − 〈F (g), p〉
)

≤ α1 sup
g∈C

(

〈g, q1〉 − 〈F (g), p〉
)

+

+ α2 sup
g∈C

(

〈g, q2〉 − 〈F (g), p〉
)

This shows H∗[α1q1 + α2q2, p] ≤ α1H
∗[q1, p] + α2H

∗[q2, p].

(iii) This can be shown as just. �
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2.1.2 Monotonicity of the main functionals

The following theorem shows the monotonicity of the defined functionals under the action of
Markov operators.

Theorem 2 For any convex function F , any Markov operator M, any g ∈ C and any p, q ∈ S∗

the following inequalities hold:

H[Mg, p] ≤ H[g,M∗p] (3)

H∗[M∗q,M∗p] ≤ H∗[q, p] (4)

In (3) equality holds for deterministic Markov operators. In (4) equality holds for deterministic
Markov operators with dense range.

Proof: The inequalities (3) and (4) together with boundedness and convexity were already
proved in [14]. �

For completeness we repeat the easy proofs of the monotonicity, based on Jensen’s inequality.
The classical Jensen inequality for probability measures p reads

〈

F (g), p
〉

≥ F
(

〈g, p〉
)

with equality if p = δz is a point measure. Since a Markov M operator can be represented as
a dual product with a family of probability measures, say ωz ⊂ S∗, it follows

〈

F (g), ωz

〉

≥ F
(

〈g, ωz〉
)

equivalent to the inequality

MF (g) ≥ F (Mg) (5)

This is an inequality between continuous functions in C. Equality holds for strict convex
functions F for deterministic Markov operators (families of point measures) and reads

(MγF )(g) = (F ◦ g) ◦ γ = F ◦ (g ◦ γ) = F (Mγg)

Taking the dual product of (5) with some p ∈ S∗ it follows, since p ≥ 0,

〈MF (g), p〉 ≥ 〈F (Mg), p〉 (6)

This is a general variant of Karamata’s inequality and is equivalent to (3).
Finally, (4) follows from

H∗[M∗q,M∗p] = supg∈C

(

〈g,M∗q〉 − 〈F (g),M∗p〉
)

= supg∈C

(

〈Mg, q〉 − 〈MF (g), p〉
)

≤ supg∈C

(

〈Mg, q〉 − 〈F (Mg), p〉
)

= supf∈R(M)

(

〈f, q〉 − 〈F (f), p〉
)

≤ supg∈C

(

〈g, q〉 − 〈F (g), p〉
)

= H∗[q, p]

Denote as usual g = Mg′, p′ = M∗p and q′ = M∗q, inequalities (3) and (4) read

H[g′, p′] ≥ H[g, p] (7)

H∗[q′, p′] ≤ H∗[q, p] (8)

Note, the functionals H and H∗ have different monotonicities in time.
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2.1.3 Reduced functionals for invariant measures and Lyapunov functions

We fix a Markov operator M and consider an arbitrary fixed point (invariant measures) µ ∈ S∗

of M∗. For this measure we define

L[g] = H[g, µ] = 〈F (g), µ〉, g ∈ C (9)

L∗[q] = H∗[q, µ] = sup
g∈C

(

〈g, q〉 − 〈F (g), µ〉
)

, q ∈ S
∗ (10)

Then, the inequalities (3) and (4) reduce to

L[Mg] ≤ L[g], (11)

L∗[M∗q] ≤ L∗[q] . (12)

These functionals are well known as Lyapunov function, for example in the theory of evolution
equations like (see, e.g. [1])

∂sg(s) = Ag(s), g(0) = g0, in C (13)

∂tp(t) = A∗p(t), p(0) = p0, weak* in C
∗ (14)

If T(s2 − s1) and T∗(t2 − t1) are the solution operators (semigroups) of these equations, from
inequalities (11) and (12) follows with t2 ≥ t1 ≥ 0, g(t1) = T(s1)g0, g(t2) = T(s2)g0, p(t1) =
T∗(t1)p0, p(t2) = T∗(t2)p0, M = T(s2 − s1) it follows

L[g2] ≤ L[g1], L∗[p2] ≤ L∗[p1] .

This allows the investigation of the asymptotic behavior of the solutions to the equations.
The existence of a stationary solution, i.e., an invariant measure of the semigroup T∗(t) is a
consequence of the Kakutani-Markov Theorem.
The equations (13) and (14) is the usual writing of the Kolmogorov-Chapman equations. How-
ever s and t are different times. This is the reason, why for this equations time monotonicity
holds with respect to an invariant measure. Writing both equations with the same forward
running time t with ta ≤ t ≤ tb we have

∂tg(t) = −Ag(t), g(tb) = gb, in C

∂tp(t) = A∗p(t), p(ta) = pa, weak* in C
∗

For this equations – even for time depending operators A = A(t) – the functionals H and H∗

can be used as Lyapunov functions with the inequalities (7) and (8). (see [16]).

2.1.4 The connection with the common entropy functional

As usual, instead of the weak* equation (14) a weak equation, e.g., in L2(µ) for the density h
of p with respect to the invariant measure µ is considered. For such an equation the entropy
functional

L[h] =

∫

Z

G
(

h(z)
)

µ(dz) (15)

with some convex function G : R−→ R is defined. This is a special case of the functional H∗:
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Assuming, there is a density h of q with respect to p, i.e., q = Qph. Then, functional H∗[q, p]
reads

H∗[q, p] = sup
g∈C

(

〈g, q〉 − 〈F (g), p〉
)

= sup
g∈C

(

〈g,Qph〉 − 〈F (g), p〉
)

=

= sup
g∈C

(

〈g · h, p〉 − 〈F (g), p〉
)

= sup
g∈C

〈g · h− F (g), p〉

Since p ≥ 0, we can take the supremum pointwise and can conclude

H̃[h, p] := H∗[q, p]
∣

∣

∣

q=Qph
=

∫

Z

F ∗
(

h(z)
)

p(dz) (16)

where F ∗ is the conjugate convex function of F . This is precisely functional H since F can be
an arbitrary convex function and F and F ∗ constitute the same set.
This functional can not be used as a Lyapunov function, because h and p are mapped in different
time directions. Therefore, this functional can be used only in the case, when h or p do not
change in time, i.e., if one of them is the stationary solution. Thus, this functional is used with
p = µ (the case h =  is trivial and uninteresting), consequently it is (15).
Clearly, the right hand side of (16) makes no sense, if the radon-Nikodym derivative h does not
exist. As usual, it is defined to be equal to +∞ in this case. However, H∗[q, p] can be finite
even in this case, if F ∗ behaves well enough (see [14]).

2.2 Time irreversibility and the second law of thermodynamics

While everybody knows that time is running forward and has a fieling, whether a physical
process can be inverted or not, there is not unique definition of time irreversibility of physical
processes. Clausius defined irreversibility mutatis mutandis as: A states p′ is reachable from
the state p by an action, but the opposite is impossible. Allready Planck countered that may
be a completely different process can lead to a reversal of the event.
Obviously, a periodic or almoust periodic physical processes is reversible. The process itsself
take back the system to any former state. But if two states – the states before and after a state
change – are given, we have to find out the conditions for a physical state change to be undone.
Actually this means, is it possible to determine the direction of time from two given states.
Clearly, we don’t know all possible physical processes which are known today or which will be
later discovered. Therefore, we are not interested to understand whether there is such a physical
process, but whether we can preclude its existence for mathematical reasons, i.e., whether the
non-existence of such a physical process is a logical consequence.
Knowing that a physical state change is provided by the action of a Markov operator, we will say
that a process is irreversible, if there cannot exist a Markov operator doing the reverse action.
If the reverse action is provided by some non-Markov operator, this means that it maps some
probability measure out of the set of probability measures (e.g., to a non-positive measure).
This is a logical contradiction because such a result is physically non understandable.
In this sense we try to give to one of the monotonicity inequalities namely to the inequality
(8) a physical sense. This inequality is connected with probability measures that are widely
accepted to understood as statistical states.
The inequality (7) is connected with a continuous function and a probability measures. The
interpretation of the continuous function depends on the context of the problem of consider-
ation. It can be interpretated as observable, test function, potential, information and much
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more. Thus, the interpretation of inequality (7) can not be general. Moreover, inequality (8)
corresponds to the typical understanding of the second law of thermodynamic. That’s why, we
concentrate here on inequality (8).
At first we state that there is no talk about a complete reversal of all actions of a general
Markov operator. Given a Markov operator M. We consider its range, the set R(M∗) = {p′ ∈
S∗ : p′ = M∗p, p ∈ S∗}. Is there a Markov operator X with p = Xp′ for all p′ ∈ R(M∗)?
Obviously we have X = M−1 on R(M∗). This is possible only if M is a deterministic Markov
operator. This is, for example, a simple consequence of the fact, that the spectrum of a Markov
operator lies in the closed unit disc. Thus, a invertible Markov operator must have a spectrum
in the closed unit circle, i.e., it must be a deterministic Markov operator.
To demand all actions to be invertible is one extreme case. The other is to demand that one
actions can be inverted. Given a Markov operator M and two states p and p′ with p′ = M∗p. Is
there a Markov operator X with p = X∗p′? This problem was allready solved in subsubsection
1.2.2. X = Q−1

p′ M∗Qp is such an operator. We claim that such an operator allways exists (see
subsection 3.6). In simple situations this is true (see Appendix B).
This is in contrast to the usual interpretation of irreversibility with respect to one state like the
definition of irreversibility by Clausius: “A states p′ is reachable from the state p by an action,
but the opposite is not possible.” This interpretation is connected with the reduced functional
(9) and implicitly considers states with respect to an equilibrium state. Then, the statement
is a consequence of inequality (14).
The next step is the question, whether the action of two states is invertible. Given a Markov
operator M and two pairs of states (p, q) and (p′, q′) with p′ = M∗p and q′ = M∗q. Is there
a Markov operator X with p = X∗p′ and q = X∗q′? We show that such a Markov operator
cannot exist if H∗[q′, p′] < H∗[q, p] for some functional H∗ (i.e., for some convex function,
generating H∗). We show the non-existence of the mentioned operator X by contradiction.
Assume that there exists a X with p = X∗p′ and q = X∗q′. Then, we can conclude from (8)
H∗[X∗q′,X∗p′] ≤ H∗[q′, p′]. Hence, H∗[q, p] ≤ H∗[q′, p′], a contradiction to H∗[q′, p′] < H∗[q, p].
In general, in (8) equality H∗[q′, p′] = H∗[q, p] is possible. This means, M acts on the states p
and q like a deterministic Markov operator. Since we consider the action of M∗ only on p and q,
we don’t know how M∗ is acting on other states. On two states we cannot distingwish Markov
operator from deterministic ones. A Markov operator M is called mixing, if M∗ maps extremal
points of S to inner points. For such operators the strong inequality H∗[M∗q,M∗p] < H∗[q, p]
holds for any p, q ∈ S∗ if the convex function, generating H∗ is strict convex (see [14]).
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3 Majorization

Classical majorization theory has at least two origins, majorization of two finite dimensional
vectors in linear algebra and majorization of the rearrangements of two functions in integration
theory in Euclidian spaces. In both cases this is an partial order between two objects (two
vectors or two integrable functions). In both cases functionals (sums or integrals) of the objects
are compared. Thus, implicitely can underlying measure is assumed.
We recall here the main statements of the mentioned theories.

3.1 Classical majorization theory in linear algebra

There is a huge amount of literature on majorization theory in linear algebra. We refer here
only to the classical book of Marshal and Olkin [10]. But we can not resist to mention the
introduction to this topic in Steele’s excellent book [13].
In linear algebra, the classical definition of majorization reads as follows (see, e.g., [10]):
Let x = (xi)

n
i=1 and y = (yi)

n
i=1 be two real valued sequences and x↓ and y↓ their decreasing

rearrangements (the vector with the same components, sorted in decreasing order). We say x
majorize y, denoted by y ≺

 

x (we explain the reason for the index  later), if

k
∑

i=1

y↓i ≤
k

∑

i=1

x↓i , k = 1, ..., n− 1 (17)

n
∑

i=1

y↓i =
n

∑

i=1

x↓i =
n

∑

i=1

xi =
n

∑

i=1

yi (18)

A matrix D is called stochastic, if the entries are nonnegative and the rows sum up to one, i.e.,
if D =  , where  is the vector with all components equal to 1.
Note that the ordering of the vectors is a special operation. We have to take two permutation
matrices Πx and Πy such that Πxx = x↓ and Πyy = y↓.
A matrix D is called doubly stochastic, if both D and its transposed D∗ are stochastic matrices.
The main theorem in the classical majorization theory in linear algebra states that the following
statements are equivalent:

(i) Majorization: y ≺
 

x

(ii) Doubly stochastic: ∃ doubly stochastic D with y = Dx

(iii) Karamata’s inequality:
∑n

i=1 F (yi) ≤
∑n

i=1 F (xi) for all convex F : R−→ R

(iv) Hardy-Littlewood inequality: For all z ∈ Rn we have
∑n

i=1 z↓i y
↓

i ≤
∑n

i=1 z↓i x
↓

i .

Due to the equivalence, any of the above statements can be taken as the definition of majoriza-
tion. Note that Karamata’s inequality does not require the ordering of the vectors, since the
sum is invariant with respect to permutations.
Given two majorizing vectors x and y, the doubly stochastic matrix D connecting them can
be found explicitely by the so-called Robin-Hood method (see Appendix B). Moreover, this
method is a proof of Birkhoff’s famos Theorem, stating that any doubly stochastic matrix is a
convex combination of permutation matrices or, in other words, the permutation matrices are
the extremal elements of the convex set of doubly stochastic matrices.
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3.2 Classical majorization in integration theory

Majorization theory for functions and the connection to integration theory in Euclidian spaces
is a powerful tool, e.g., to estimate norms of functions in various function spaces. We refer here
to the books of Lieb and Loss [9] and Bennett and Sharpley [2].

As usual majorization of two functions g and f in a functions space on a given nonnegative
measure p is defined using a rearrangement of the functions (usually denoted by g∗(t) and
f ∗(t)), similar to the ordering of vectors in linear algebra.

Some authors start the discussion of the rearrangement of functions with a “rearrangement of
sets”. From a physical point of view, this implies a rearrangement of the underlying state space
Z. Moreover, the measure p is fixed and the same for g and f . As usual, the explanation is
restricted to non-atomic or uniform and purely atomic measures.

Because the rearrangement of the state space is unphysical and due to the desired larger gen-
erality, we try to avoid the notion of rearrangement and define majorization in another way.
Previously, we sketch briefly the common way to make the differences clearer. We use here the
same notation as it will be used in subsection 3.4.

We denote the level set of the function g ∈ C at a point x by

Lg(x) = g−1
(

(x,∞)
)

=
{

z ∈ Z|g(z) > x
}

Due to the continuity of g, this is an open set. From gmin ≤ g(z) ≤ gmax it follows

Lg(x) = Z, x < gmin

Lg(x) = ∅, x ≥ gmax

Lg(x) ⊂ Lg(x
′), x ≥ x′

For a given probability measure p ∈ S∗(Z) we define by

Fgp(x) = p
(

Lg(x)
)

= 〈 Lg(x), p〉 = p
(

g−1
(

(x,∞)
))

=
(

p ◦ g−1
)

(x,∞) (19)

the distribution function of g with respect to p and by

Ggp(t) = inf{x|Fgp(x) ≤ t}

its invers. The picture below illustrate the situation.

01
Fgp(x)Lg(x)Lg(x) t

x

gmax

gmin

gmin

gmax

Ggp(t)

g(z)

x

Z
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The distribution function and its invers have the well known properties

Fgp(x) = 1, x < gmin

Fgp(x) = 0, x ≥ gmax

Fgp(x) ≤ Fgp(x
′), x ≥ x′

Ggp(t) ≤ Ggp(t
′), t′ ≥ t

Fgp : [gmin, gmax]−→ [0, 1]

Ggp : [0, 1]−→ [gmin, gmax]

In the usual notation we have Ggp(t) = g∗(t) and Gfp(t) = f ∗(t). The measure p is fixed from
the begining and must be non-atomic or uniform and purely atomic.
Now, g majorizes f – written f ≺p g (the index point out the fixed measure) – if

∫ t

0

f ∗(t′)dt′ ≤

∫ t

0

g∗(t′)dt′ (20)

for all t ∈ [0, 1) and

∫ 1

0

f ∗(t′)dt′ =

∫ 1

0

g∗(t′)dt′ .

In our notation this means
∫ t

0
Ggp(t

′)dt′ ≤
∫ t

0
Gfp(t

′)dt′ for t ∈ [0, 1) and 〈g, p〉 = 〈f, p〉.
In [2] it is shown that there exists a measure preserving operator in L1(p), mapping f to g.
Clearly, this requires a fixed measure. It is not inverstigated how this operator acts on functions
from C(Z).

3.3 A new definition of majorization

Time irreversibility corresponds to a Markov operator acting on a pair of objects, an observable-
measure pair or a pair of two measures. We define majorization of a pair of objects in such a
way that one pair in majorized by another pair, if the first is a pair “before” and the second
is a pair “after”. As in subsection 1.1 we denote by a prime an object after the action of a
Markov operator.

Definition 1: Majorization of a pair composed of a continuous function and a
probability measure
A pair (g′, p′) is majorized by (g, p), written (g′, p′) ≺ (g, p) if there exists a Markov operator
M with g = Mg′ and p′ = M∗p.

Definition 2: Majorization of a pair of measures
A pair (p′, q′) is majorized by (p, q), written (p′, q′) ≺∗ (p, q) if there exists a Markov operator
M with p′ = M∗p and q′ = M∗q.

In the classical theory, majorization is defined by some inequalities, (17) or (20). Then, the
existence of an operator mapping the majorized objects to each other is a consequence. This
assumes implicitely that a measure is fixed. This is a special case of the general situation.
We see no reason to restrict ourself to this special case. Once a measure is not fixed from the
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beginning, we concentrate on the main reason of the connection of two majorizated objects –
the action of a Markov operator.
Naturally, it would be nice, to have a simple criterion, whether one pair is majorize by another
one. In the next subsection we derive inequalities – special cases of Karamata’s inequality and
similar to (17) and (20) – that such pairs of objects have to satisfy. Unfortunately, we don’t
know a proof for the reverse statement: If such inequalities are satisfied, does a corresponding
Markov operator exists. In special cases this can be shown (see Appendix B, a proof based on
the Robin-Hood method). A general theorem we left as a conjecture (subsection 3.6).

3.4 The main functionals for special convex functions

We denote by x ∈ R a point of the range of functions from C and by t ∈ [0, 1] a point of the
range of probablility measures from S∗. A general integral 〈g, p〉 =

∫

Z
g(z)p(dz) is a Lebesgue

integral on the topological space Z. Often, it is much easier to show properties of functions
by analizing Riemann integrals instead of Lebesgue integrals. Therefore, a typical approach in
integration theory is to consider Riemann integrals over x or t of some other functions, say a
and b, resp., depending on g and p. In other words, there are functions agp(x) and bgp(t) sought,
satisfying

〈g, p〉 =

∫

Z

g(z)p(dz) =

∫ gmax

gmin

agp(x)dx =

∫ 1

0

bgp(t)dt (21)

In such a transition, only the information is included that actually is contained in g and p. The
information of the structure of Z is lost.
Given, for example, a function g with g(z1) = g(z2) for some z1 6= z2, this means, the observable
g cannot distingwish such points. Fixing such an observable, we decompose the state space in
distingwishable states. The function agp(x) has to collect both, indistinguishably states with
respect to a given observable and the measure of the set of such states. This is the physical
background of the transition from the Lebesgue integral over the state space to a Riemann
integral over the observation results.
The function agp(x) and bgp(t) will be the subgradients of a pair of special convex function. We
comment the classical way of this transition, based on a rearrangements of the function g in
subsubsection 3.7.
The proposed method allows to construct Riemann integrals of the mentioned type also for a
pair of measures according to the transition from H to H∗. This aproach allows to construct
“rearrangements of densities of two measure” even if such a density does not exist because the
Radon-Nikodym theorem fails.
We consider the main functionals for a family of special convex functions

Fx(ξ) = (ξ − x)+

and their conjugate

F ∗x (θ) = xθ, θ ∈ [0, 1] and = +∞ otherwise .

We define the following functionals for a pair of a continuous function and a probability measure
and a pair of two measures

Mgp(x) = H[g, p]
∣

∣

∣

F=Fx

= 〈(g − x)+, p〉, x ∈ R (22)

Sqp(x) = H∗[q, p]
∣

∣

∣

F=F ∗x

= sup
g∈C[0,1]

(

〈g, q〉 − 〈xg, p〉
)

, x ∈ R (23)
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Since F ∗∗x = Fx, we have for a measure q = Qpg with continuous density g with respect to p
the equality Sqp(x) = Mgp(x). Moreover, we have 〈g, p〉 = 〈Q−1

p q, p〉 = 〈Q−1
p p, q〉 = 〈 , q〉 = 1.

Lemma 1 Mgp has the following properties:

(i) Mgp(x) = 〈g, p〉 − x, x < gmin

(ii) Mgp(x) = 0, x ≥ gmax

(iii) Mgp(·) is monotone non-increasing.

(iv) Mgp(·) is convex.

(v) Mgp(x) is continuous for x ∈ R.

Proof:

(i) This follows from (g − x)+ = g − x for x < gmin.

(ii) This follows from (g − x)+ = 0 for x ≥ gmax.

(iii) This follows from the fact that (g − x)+ is monotone non-increasing in x.

(iv) We set α1,2 ∈ [0, 1] with α1 + α2 = 1. Since (ξ− x)+ is convex as a function of ξ, we have

(ξ − α1x1 + α2x2)+ ≤ α1(ξ − x1)+ + α2(ξ − x2)+

and therefore from definition (22) and p ≥ 0

Mgp(α1x1 + α2x2) ≤ α1Mgp(x1) + α2Mgp(x2)

(v) This follows from the convexity of Mgp. �

To prove similiar properties for Sqp we define

Xqp = inf
B∈B

q(B)

p(B)
, Yqp = sup

B∈B

q(B)

p(B)
, Zqp = sup

B: p(B)=0

q(B)

Since p, q ≥ 0 and Z ∈ B, we have 0 ≤ Xqp ≤ 1 ≤ Yqp ≤ +∞ and Zqp ≥ 0.
With a continuous density g = Q−1

p q we have Xqp = gmin, Yqp = gmax and Zqp = 0.

Lemma 2 Sqp has the following properties:

(i) Sqp(x) = 1− x, x ≤ Xqp.

(ii) Sqp(x) = Zqp, x ≥ Yqp.

(iii) Sqp(·) is monotone non-increasing.

(iv) Sqp(·) is convex.

(v) Sqp(x) is continuous for x ∈ R.
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Proof:

(i) Since p, q ∈ S∗, for x ≤ 0 the expression under the supremum is non-negative and therefore
the supremum is attained at the larges function g =  . Hence Sqp(x) = 〈 , q〉− 〈x , p〉 =
1− x.

(ii) Taking in definition (23) g ≡ 1 and g ≡ 0, we conclude Sqp(x) ≥ 0 for x ≥ 1 and
Sqp(x) ≥ 1− x for x ≤ 0.

(iii) This follows because Sqp(x) is a supremum over a function monotone non-increasing in x.

(iv) We set α1,2 ∈ [0, 1] with α1 + α2 = 1 and use sup(a + b) ≤ sup(a) + sup(b) to show

〈g, q〉 − 〈(α1x1 + α2x2)g, p〉 = 〈(α1 + α2)g, q〉 − α1〈x1g, p〉 − α2〈x2g, p〉

〈g, q〉 − 〈(α1x1 + α2x2)g, p〉 = α1

(

〈g, q〉 − 〈x1g, p〉
)

+ α2

(

〈g, q〉 − 〈x2g, p〉
)

sup
g∈C[0,1]

(

〈g, q〉 − 〈(α1x1 + α2x2)g, p〉
)

≤ α1 sup
g∈C[0,1]

(

〈g, q〉 − 〈x1g, p〉
)

+

+ α2 sup
g∈C[0,1]

(

〈g, q〉 − 〈x2g, p〉
)

Sqp(α1x1 + α2x2) ≤ α1Sqp(x1) + α2Sqp(x2)

(v) This follows from the convexity of Sqp. �

The following pictures illustrate the functionals Mgp and Sqp.

Mgp(x)

r

gmin gmax

〈g, p〉 − gmin

Sqp(t)
r

Xqp

r

Yqp1

Zqp

1−Xqp

1

0

Beside the functionals Mgp and Sqp we define some Fenchel-Legendre transforms of them:

Agp(t) = inf
x∈R

(xt + Mgp(x)), t ∈ [0, 1] (24)

Tqp(t) = inf
x∈R+

(xt + Sqp(x)), t ∈ [0, 1] (25)

As usual, we define inf = −∞ and sup = ∞ outside of the domain of definition.
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The inf-expression is connected with the usual Fenchel-Legendre transform F ∗(t) of a function
F (x) defined by F ∗(x) = supx∈R

(xt− F (x)) by the relation

inf
x∈R

(xt + F (x)) = − sup
x∈R

(−xt− F (x)) = −F ∗(−t)

Thus, we have Agp(t) = −M∗
gp(−t) and Tqp(t) = −S∗qp(−t).

Corollary 1 Mgp(x) and Sqp(x) can be caluclated from Agp(t) and Tqp(t) by

Mgp(x) = sup
t∈[0,1]

(Agp(t)− xt) (26)

Sqp(x) = sup
t∈[0,1]

(Tqp(t)− xt) (27)

Proof: The right expressions in (26) and (27) are the second convex conjugate or bipolar of
Mgp(x) and Sqp(x). They coincide with Mgp(x) and Sqp(x) due to convexity. We have

Mgp(x) = sup
t∈[−1,0]

(xt−M∗
gp(t)) = sup

t∈[−1,0]

(xt + A∗gp(−t)) = sup
t∈[0,1]

(−xt + A∗gp(t)) ,

i.e., (26). (27) is shown analogously. �

The following pictures illustrate the functionals Agp and Tqp(x).
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Lemma 3 Agp has the following properties:

(i) Agp(·) is concave.

(ii) Agp(0) = 0.

(iii) Agp(1) = 〈g, p〉.

Proof:

(i) This follows from definition (24).
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(ii) From definition (24) we have Agp(0) = infx∈R Mgp(x). Thus, Agp(0) ≥ 0 due to Lemma
1. Since Mgp(gmax) = 0 we have equality.

(iii) Since Mgp is convex, it has the larges slope for x < gmin. From definition (24) we have
Agp(1) ≥ infx<gmin

(x + Mgp(x)) = infx<gmin
(x + 〈g, p〉 − x) = 〈g, p〉. But for any x < gmin

we have equality. �

Agp has one-side derivatives: A′gp(+0) = gmax and A′gp(1− 0) = gmin.

Lemma 4 Tqp has the following properties:

(i) Tqp(·) is concave.

(ii) Tqp(·) is monotone non-decreasing.

(iii) Tqp(0) = Zqp.

(iv) Tqp(1) = 1.

Proof:

(i) This follows from definition (25).

(ii) This is because Tqp has nonnegative slopes from Yqp down to Xqp.

(iii) We have Tqp(0) = infx∈R+ Sqp(x) = Zqp.

(iv) We have x + Sqp(x) ≥ x + (1 − x) = 1 with equality for x ≤ Xqp. Hence, Tqp(1) =
infx∈R+(x + Sqp(x)) = 1. �

The connection with the Radon-Nikodym Theorem gives the following

Lemma 5 The measure q is differentiable with respect to p, if and only if Zqp = 0.

Proof: If Zqp = 0, then p(B) = 0 implies q(B) = 0. Thus, the Radon-Nikodym Theorem
holds. Conversely, if Zqp > 0, then there is a B with p(B) = 0 and q(B) > 0. Hence, the
Radon-Nikodym Theorem fails.

3.4.1 The subdifferentials

Mgp(·) is a convex function. Thus, it has a monotone non-increasing subdifferential ∂Mgp

satisfying

Mgp(y)−Mgp(x) ≥ ∂Mgp(x)(y − x), x, y ∈ R

Agp(·) is a concav function. Thus, it has a monotone non-decreasing subdifferential ∂Agp

satisfying

Agp(s)− Agp(t) ≤ ∂Agp(t)(s− t), s, r ∈ [0, 1]

We have

x ∈ Agp(t) ⇐⇒ t ∈Mgp(x), (x, t) ∈ Φgp
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By Φgp, we denote the maximal monotone (decreasing) map

Φgp =
{

(x, t) : x ∈ R, t ∈ ∂Mgp(x)
}

=
{

(x, t) : t ∈ [0, 1], x ∈ ∂Agp(t)
}

Analogously we have a monotone non-increasing subdifferential ∂Sqp and a monotone non-
decreasing subdifferential ∂Tqp.

We choose one point from every set of the subdifferentials by setting

Fgp(x) = − sup ∂Mgp(x)

Ggp(t) = inf ∂Agp(t)

Uqp(x) = − sup ∂Sqp(x)

Vqp(t) = inf ∂Tqp(t)

Fgp and Ggp are inverse to each other in the sense of

Ggp(t) = inf{x|Fgp(x) ≤ t}

Fgp(x) = inf{t|Ggp(t) ≤ x} .

Similar we have

Vqp(t) = inf{x|Uqp(x) ≤ t}

Uqp(x) = inf{t|Vqp(t) ≤ x} .

From the general connections of convex functions and their subdifferentials it is well know that
the functions Mgp(x), Sqp(x), Agp(t) and Tqp(t) can be represented as Riemann integrals of the
functions Fgp(x), Uqp(x), Ggp(t) and Vqp(t) resp. To regard all cases, we define the endpoints
of the integration intervalls not depending on g, p, q, using the invariant values Mgp(+∞) = 0,
Agp(0) = 0, Sqp(0) = 0 and Tqp(1) = 1. Hence, we set

Mgp(x) =

∫ gmax

x

Fgp(x
′)dx′ (28)

Agp(t) =

∫ t

0

Ggp(t
′)dt′, t ∈ [0, 1] (29)

and

Sqp(x) = 1−

∫ x

0

Uqp(x
′)dx′ (30)

Tqp(t) = 1−

∫ 1

t

Vqp(t
′)dt′, t ∈ [0, 1] (31)

The functionals Mgp(x), Sqp(x), Agp(t) and Tqp(t) provide a number of other representations.
This will be the main result of the subsubsections 3.4.5 and 3.4.6. Before presenting them, we
prove a couple of lemmas.
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3.4.2 The level sets

We recall the definition of the level set of the function g ∈ C at a point x by

Lg(x) = g−1
(

(x,∞)
)

=
{

z ∈ Z|g(z) > x
}

Obviously,

〈(g − x)+, p〉 = 〈g − x, p〉Lg(x) = 〈g, p〉Lg(x) − xp
(

Lg(x)
)

. (32)

The following picture is an illustration of Jensen’s inequality (5) for the special case F = Fx,
i.e. MFx(g) ≥ Fx(Mg) and the connection of level sets and Fx(g) = (g − x)+.

gmin

gmax

x
g

Fx(g)

Lg(x)

Z

Mg

Fx(Mg)

LMg(x)

MFx(g)

3.4.3 The range of a measure

In the sequel we compare these functionals for some measure p with the same functional for
the measure M∗p. We denote by

Ep = {t ∈ [0, 1] : ∃B ∈ B, p(B) = t},

the range of the measure p as a function of Borel sets. Since, we restrict ourselves to probability
measures, Ep ⊂ [0, 1]. A main assumption of the classical majorization theory is Ep = TM∗p.
This is clear, because the idea of rearrangement of a function or the rewriting of a vector in
decreasing order is only possible, if the measures of the underlying sets before and after the
rearrangement are “comparable”. This is only possible, if 1) p = µ (starting with a fixed
measure and considering all with respect to this measure); 2) Ep = [0, 1] (the non atomic case)
and 3) Ep = {0, 1/n, 2/n, ..., (n− 1)/n, 1} (the uniform, pure atomic case).

Since the main idea of this paper is to consider arbitrary situations, we try to define majorization
without using the idea of rearrangement. The consideration of general sets Ep leads to the
most technical difficulties in the sequel. The pure atomic but non-uniform case is considered
in Appendix A.
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3.4.4 Two extremal properties of the level set

The following Lemma shows that under all Borel sets B, the level sets maximize the value of
〈g, p〉B − xp(B).

Lemma 6 Let g ∈ C, B ∈ B(Z) and x ∈ R be arbitrary. Then, the following inequality holds

〈g, p〉B − xp(B) ≤ 〈g, p〉Lg(x) − xp(Lg(x)) (33)

Proof: We have g(z) > x for z ∈ Lg(x) and g(z) ≤ x for z 6∈ Lg(x). Hence, from

Lg(x) = (Lg(x) \B) ∪ (B ∩ Lg(x))

B = (B \ Lg(x)) ∪ (B ∩ Lg(x))

follows

〈g, p〉Lg(x) − 〈g, p〉B = 〈g, p〉Lg(x)\B + 〈g, p〉B∩Lg(x) − 〈g, p〉B\Lg(x) − 〈g, p〉B∩Lg(x) =

= 〈g, p〉Lg(x)\B − 〈g, p〉B\Lg(x) ≥

≥ xp(Lg(x) \B) + xp(B ∩ Lg(x))− xp(B \ Lg(x))− xp(B ∩ Lg(x)) =

= xp(Lg(x))− xp(B)

This proves the Lemma. �

Corollary 2 Let g ∈ C and x, y ∈ R be arbitrary. Then, the following inequality holds

〈g, p〉Lg(x) − 〈g, p〉Lg(y) ≥ x
(

p
(

Lg(x)
)

− p
(

Lg(y)
)

)

(34)

Proof: This is (33) with B = Lg(y). �

Lemma 7 Fgp(x) = p
(

Lg(x)
)

.

Proof: From Corrolary 2 we have

〈g, p〉Lg(y) − 〈g, p〉Lg(x) ≥ y
(

p
(

Lg(y)
)

− p
(

Lg(x)
)

)

Adding xp
(

Lg(x)
)

we conclude

(

〈g, p〉Lg(y) − yp
(

Lg(y)
)

)

−
(

〈g, p〉Lg(x) − xp
(

Lg(x)
)

)

≥ −p
(

Lg(x)
)

(y − x)

Hence, Mgp(y)−Mgp(x) ≥ −p
(

Lg(x)
)

(y − x) for all x, y ∈ R. Thus, −p
(

Lg(x)
)

∈Mgp(x). �

3.4.5 Lebesgue and Riemann integral representations

We collect some integral representations starting with the so-called layer cake representation.

Lemma 8 Let F (x) be a function with a Riemann integrable derivative. Then

〈F (g), p〉 =

∫

Z

F
(

g(z)
)

p(dz) =

∫ gmax

gmin

Fgp(x)F ′(x)dx + F (gmin)

holds.
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Proof: Beside the set Lg(x) we consider the set

Cg = {(z, x) | g(z) > x, x ≥ gmin}

i.e., Cg is the set under the function g from x down to gmin. For  Cg
– the characteristic function

of Cg – we have

∫ gmax

gmin

 Cg
(z, x)h(x)dx =

∫ g(z)

0

h(x)dx

(this is a cut along the set Cg for fixed z)
and

∫

Z

 Cg
(z, x)p(dz) =

∫

Lg(x)

p(dz) = Fgp(x)

because for fixed x, the cut of Cg is the
level set Lg(x). Using this equalities we
get from Fubini’s Theorem

gmin

gmax

x

Z

Cg

〈F (g), p〉 − F (gmin) = 〈F (g)− F (gmin), p〉 =

∫

Z

(

F (g(z))− F (gmin)
)

p(dz) =

=

∫

Z

(

∫ g(z)

gmin

F ′(x)dx

)

p(dz) =

∫

Z

(

∫ g(z)

gmin

 Cg
(z, x)F ′(x)dx

)

p(dz) =

=

∫ gmax

gmin

(
∫

Z

 Cg
(z, x)p(dz)

)

F ′(x)dx =

∫ gmax

gmin

Fgp(x)F ′(x)dx .

Hence,

〈F (g), p〉 =

∫ gmax

gmin

Fgp(x)F ′(x)dx + F (gmin) � (35)

Since Fgp(x) and Ggp(t) are inverse to each other, for suitable functions F and G, we can write
the integration by parts rule as an identity for Riemann integrals:

∫ 1

0

F (Ggp(t))G
′(t)dt + G(0)F (gmax) = G(1)F (gmin) +

∫ gmax

gmin

G
(

Fgp(x)
)

F ′(x)dx (36)

The special case G(t) = t leads to the following identity:

∫ 1

0

F (Ggp(t))dt = F (gmin) +

∫ gmax

gmin

Fgp(x)F ′(x)dx (37)

Together with (35) we obtain

〈F (g), p〉 =

∫ 1

0

F (Ggp(t))dt = F (gmin) +

∫ gmax

gmin

Fgp(x)F ′(x)dx (38)

This is the desired representation (21) of the Lebesgue integral as Riemann integrals over the
range of the continuous function and over the range of the measure, resp.
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In (36), The special case F (x) = x leads to the identity
∫ 1

0

Ggp(t)G
′(t)dt + G(0)gmax = G(1)gmin +

∫ gmax

gmin

G
(

Fgp(x)
)

dx (39)

Integrating by parts ones more, from (38) and (36), we obtain identities containing Mgp and
Agp:

∫ gmax

gmin

Fgp(x)F ′(x)dx = F ′(gmin)(〈g, p〉 − gmin) +

∫ gmax

gmin

Mgp(x)F ′′(x)dx (40)

∫ 1

0

Ggp(t)G
′(t)dt = 〈g, p〉G′(1)−

∫ 1

0

Agp(t)G
′′(t)dt (41)

Remark: All identities remain true, if we replace gmin by some c− ≤ gmin and gmax by some
c+ ≥ gmin.
The identities allow a representation of the functional H for an arbitrary, but smooth enought,
convex function F in terms of piecewise affine convex functions Fx.

Corollary 3 The following identity holds for c ≤ gmin:

〈F (g), p〉 = F (c) + F ′(c)(〈g, p〉 − c) +

∫ gmax

c

〈(g − x)+, p〉F ′′(x)dx (42)

Proof: This is a consequence of (38) and (40) together with the definition of Mgp. �

Identity (42) can be regarded as a consequence of the Taylor expansion for F
(

g(z)
)

:

F
(

g(z)
)

= F (c) +
(

g(z)− c
)

F ′(c) +

∫ g(z)

c

(

g(z)− x
)

F ′′(x)dx

Analogously, we obtain the following identities containing Sqp, Tqp, Uqp and Vqp.

∫ 1

0

F (Vqp(t))G
′(t)dt + G(0)F (Yqp) = G(1)F (Xqp) +

∫ Yqp

Xqp

G
(

Uqp(x)
)

F ′(x)dx

∫ 1

0

F (Vqp(t))dt = F (Xqp) +

∫ Yqp

Xqp

Uqp(x)F ′(x)dx

∫ 1

0

Vqp(t)G
′(t)dt + G(0)Yqp = G(1)Xqp +

∫ Yqp

Xqp

G
(

Uqp(x)
)

dx

∫ Yqp

Xqp

Uqp(x)F ′(x)dx = F ′(Xqp)(1−Xqp)− F ′(Yqp)Zqp +

∫ Yqp

Xqp

Sgp(x)F ′′(x)dx

∫ 1

0

Vqp(t)G
′(t)dt = 〈g, p〉G′(1)−

∫ 1

0

Tqp(t)G
′′(t)dt

H∗[q, p] =

∫ 1

0

F ∗(Vqp(t))dt = F ∗(Xqp) +

∫ Yqp

Xqp

Uqp(x)F ∗′(x)dx

This identities can be used, if q has to Radon-Nikodym derivative with respect to p. In this
case, Yqp = +∞ and Zqp > 0 is possible. Nevertheless, for suitable functions F the integrals
can be finite.
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3.4.6 Equivalent representations for the special functionals

For practical reasons we show some other ways for the calculation of the functionals.

Theorem 3 The following equivalent representations of the above defined functionals hold:

Mgp(x) = sup
B∈B

(

〈g, p〉B − xp(B)
)

(43)

Agp(t) = conv-hypo

(

sup
B:p(B)=t

〈g, p〉

)

, t ∈ [0, 1] (44)

Sqp(x) = sup
B∈B

(

q(B)− xp(B)
)

(45)

Tqp(t) = conv-hypo

(

sup
B:p(B)≤t

q(B)

)

, t ∈ [0, 1] (46)

where conv-hypo is the convex hull of the hypo-graph.

Proof:
Since Lg(x) is a Borel set, (43) follows from (32) and (33) of Lemma 6.
To show (45), we notice that continuous functions in C[0,1] can be approximated from below by
characteristic functions of Borel sets. Hence,

sup
g∈C[0,1]

(

〈g, q〉 − 〈xg, p〉
)

= sup
B∈B

(

〈 B, q〉∗ − x〈 B, p〉∗
)

= sup
B∈B

(

q(B)− xp(B)
)

This shows (45).
To show (44) we use definition (24) and (43) and the well known fact that the change of the
order of sup and inf gives the convex (or concave) hull of the expression. The “concave hull” is
the convex hull of the hypo-graph of the function. We have

Agp(t) = inf
x∈R

(xt + Mgp(x)) = inf
x∈R

(xt + sup
B∈B

(

〈g, p〉 − xp(B)
)

) =

= inf
x∈R

sup
B∈B

(xt + 〈g, p〉 − xp(B)) =

= conv-hypo

(

sup
B∈B

inf
x∈R

(xt + 〈g, p〉 − xp(B))

)

=

= conv-hypo

(

sup
B∈B

(

〈g, p〉+ inf
x∈R

x(t− p(B))
)

)

=

= conv-hypo

(

sup
B∈B

(

〈g, p〉 − χ{t=p(B)}

)

)

= conv-hypo

(

sup
B:p(B)=t

〈g, p〉B

)

(46) can be shown in a similar way using definition (25) and (45).

Tqp(t) = inf
x∈R

(xt + Sgp(x)) = inf
x∈R

(xt + sup
B∈B

(

q(B)− xp(B)
)

) =

= conv-hypo

(

sup
B∈B

(

〈g, p〉+ inf
x∈R+

x(t− p(B))
)

)

=

= conv-hypo

(

sup
B∈B

(

〈g, p〉 − χp(B)≤t

)

)

= conv-hypo

(

sup
B:p(B)≤t

q(B)

)
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Here χA is the characteristic function in convex analysis, equal 0 on A and +∞ otherwise. �

Remark: From the last two steps of the proof we can conclude

Agp(t) = sup
B:p(B)=t

〈g, p〉B, t ∈ Ep

Tqp(t) = sup
B:p(B)≤t

q(B), t ∈ Ep

3.5 Majorization inequalities

For a practical test, whether a pair of objects is majorized by another pair, some simple in-
equalities, similar to the classical inequalities (17), we prove the following theorems. Note,
these theorems are tests for a majorization, if the existence of a Markov operator – Conjectures
2 and 3 from subsection 3.6 – is proved to be true.

3.5.1 Inequalities for a pair of a continuous function and a probability measure

A Markov operator is band conserving. Therefore, we have [gmin, gmax] ⊂ [g′min, g
′
max]. For the

following we choose two real numbers c+ and c− satisfying

−∞ < c− ≤ g′min ≤ gmin ≤ gmax ≤ g′max ≤ c+ ≤ +∞ .

Taking c− and c+ as integral bounds, all integrals are taken over the range of g = Mg′ as well
as g′.

Theorem 4 Let g and g′ be two functions from C(Z) and p and p′ be two probability measures
from S∗ satisfying 〈g′, p′〉 = 〈g, p〉. Then, the following statements are equivalent:

(i) Mgp(x) ≤Mg′p′(x) for all x ∈ [c−, c+]

(ii) Agp(t) ≤ Ag′p′(t) for all t ∈ [0, 1]

(iii) 〈F (g), p〉 ≤ 〈F (g′), p′〉 (Karamata’s inequality)

(iv) For any differentiable non-decreasing h(x) we have

∫ c+

c−

h(x)Fgp(x)dx ≤

∫ c+

c−

h(x)Fg′p′(x)dx (Hardy-Littlewood inequality)

(v) For any differentiable non-decreasing r(t) we have

∫ 1

0

r(t)Ggp(t)dt ≤

∫ 1

0

r(t)Gg′p′(t)dt

Proof: F (x) = (s− x)+ is a special convex function. This shows (iii) =⇒ (i).
(i) =⇒ (iii) is a consequence from the fact that every convex function can be represented as
a weak limit of a combination of piecewise affine functions, i.e., functions of type (s− x)+. An
alternative possibility is to use identity (42). Subtracting them for (g, p) and (g′, p′) we obtain

〈F (g), p〉 − 〈F (g′), p′〉 =

∫ c+

c−

(Mgp(x)−Mg′p′(x))F ′′(x)dx
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and the claim follows, since F ′′ ≥ 0.
We show (i) =⇒ (ii). We have for every x ∈ [c−, c+], Mgp(x) ≤Mg′p′(x). Hence for all x and
t ∈ [0, 1]

xt + Mgp(x) ≤ xt + Mg′p′(x)

and therefore from Definition (24) Agp(t) ≤ Ag′p′(t).
(ii) =⇒ (i) can be shown in the same manner, using Corollary (1).
To show (iv) ⇐⇒ (i) we write
∫ c+

c−

h(x)Fg′p′(x)dx =

∫ c+

c−

h′(x)Mg′p′(x)dx− h(c)〈g′, p′〉

∫ c+

c−

h(x)Fgp(x)dx =

∫ c+

c−

h′(x)Mgp(x)dx− h(c)〈g, p〉

Subtraction gives
∫ c+

c−

h(x)
(

Fg′p′(x)− Fgp(x)
)

dx =

∫ c+

c−

h′(x)
(

Mg′p′(x)−Mgp(x)
)

dx−

− h(c)
(

〈g′, p′〉 − 〈g, p〉
)

and, since 〈g′, p′〉 = 〈g, p〉,
∫ c+

c−

h(x)
(

Fg′p′(x)− Fgp(x)
)

dx =

∫ c+

c−

h′(x)
(

Mg′p′(x)−Mgp(x)
)

dx

Now, (i) =⇒ (iv) follows because of h′(x) ≥ 0. (iv) =⇒ (i) follows setting for h′(x) a
sequence, tending to the point measure δx.
(i) =⇒ (v) follows in a similar way as (i) =⇒ (iv). �

3.5.2 Inequalities for a pair of measures

Analogously,we can derive a couple of majorization inequalities for the functionals, depending
of a pair of measures. Similarly, we choose two real numbers c+ and c− satisfying

0 ≤ c− ≤ Xqp ≤ Xq′p′ ≤ 1 ≤ Yq′p′ ≤ Yqp ≤ c+ ≤ +∞ .

Theorem 5 Let q and q′ and p and p′ be two pairs of probability measures from S∗. Then, the
following statements are equivalent:

(i) Sq′p′(x) ≤ Sqp(x) for all x ≥ 0

(ii) Tq′p′(t) ≤ Tqp(t) for all t ∈ [0, 1]

(iii) H∗[q′, p′] ≤ H∗[q, p]

(iv) For any differentiable non-decreasing h(x) we have

∫ c+

c−

h(x)Uq′p′(x)dx ≤

∫ c+

c−

h(x)Uqp(x)dx
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(v) For any differentiable non-decreasing r(t) we have

∫ 1

0

r(t)Vq′p′(t)dt ≤

∫ 1

0

r(t)Vqp(t)dt

Proof: The proof is a verbatim repetition of the corresponding statements of Theorem 4 �

Corollary 4 Given a Markov operator M. If a measure q has a density with respect to p, then
M∗q has a density with respect to M∗p.

Proof: If q � p, then Zqp = 0. From Theorem 5 we have Sq′p′(x) ≤ Sqp(x) for q′ = M∗q and
p′ = M∗p. Since Sq′p′(x) ≥ 0 we have Zq′p′ = 0. Hence q′ � p′. �

3.6 A couple of conjectures

For a closed theory, it would be necessary to prove the following statements. We formulate
them here as conjectures.

Conjecture 1 For a given Markov operator M and a probability measure p, there is a Markov
operator X, satisfying Qp′X = M∗Qp with p′ = M∗p.

Conjecture 2 Given two pairs of a continuous function and a probability measure (g, p) and
(g′, p′) with 〈g, p〉 = 〈g′, p′〉. For all x ∈ R the inequalities Mgp(x) ≤Mg′p′(x) hold. Then, there
exists a Markov operator M with g = Mg′ and p′ = M∗p.

Conjecture 3 Given two pairs of measures (q, p) and (q′, p′) with q 6= p. For all x ∈ R the
inequalities Sq′p′(x) ≤ Sqp(x) hold. Then, there exists a Markov operator M with q′ = M∗q and
p′ = M∗p.

Conjecture 4 Given two concave functions T1(t), T2(t) on t ∈ [0, 1] with T1(1) = T2(1) and
T1(t) ≤ T2(t) for all t ∈ [0, 1]. Then, there exist four probability measures p, q, p′, q′ with
T1 = Tq′p′ and T2 = Tqp.

Remark: Birkhoff’s Theorem states that there exists a doubly stochastic matrix, being the
convex combination of the extremal elements of doubly stochastic matrices – the permutations.
In general, such a theorem can not be expected. A Markov operator, even if it exists, is not a
convex combination of the extremal elements of Markov operators, since this set is to small. In
the worst case, for example, if Z is a connected subset of R

n, it consists only of one element,
namely the identity.

3.7 Discussion of the classical theory as a special case

The definition of majorization in linear algebra starts with the partial ordering of two given
vectors x and y in Rn, i.e. with the definition of two permutation matrices Πx and Πy. From
a physical point of view, a permutation matrix defines a renumbering of the states of the
underlying state space. Since in general, the permutation matrices Πx and Πy are different,
this implies that the state space is renumbered in a different way what is of cause unphysical
unless, the states of the space are indistinguishable. In such a space only the uniform measure
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– we denote it  ∗ = 1
n
(1, 1, ..., 1) – has a physical sense. This is the field of application of the

classical majorization theory.

In finite dimension, the space Rn can be identified with its dual R
∗
n unless a norm, different to

the euclidian, is defined. Thus, we cannot give to the vectors x and y a physical meaning as
extensive or intensive value. Moreover, dealing with doubly stochastic matrices, it is not clear,
whether D or D∗ has to be understood as a Markov matrix. If we consider D = M as Markov
matrix, D∗

 

∗ =  

∗ means that the uniform measure is the invariant measure of the adjoint.
With y = Dx, y ≺

 

x means (x, ∗) ≺ (y, ∗).

If we consider D∗ = M as Markov matrix, then D∗∗ = D = M∗, since the finite dimensional
euclidian space is reflexive R

∗∗
n = Rn. Now, D 

∗ =  

∗ is the equation for the invariant measure
and y ≺

 

x means (y, ∗) ≺∗ (x, ∗).

For a given Markov operator, it is possible to single out a special measure, namely an invariant
measures. Without a pre-specified Markov operator we have to identify a reference measure
for the topological space. Actually, this assumes that we have in Z a further structure, for
example, Z is a topological group. Then, Haar’s measure can be single out.

As every Markov operator, a doubly stochastic matrix satisfy the maximum principle (is band
conserving). Thus, the components of y = Dx are less spread out then the components of x.
The same is true for D∗. But the adjoint of a Markov operator does not satisfy the maximum
principle. The result of such an operator is “nearer” to an invariant measure of this operator.
For a doubly stochastic matrix the invariant measure of the adjoint is constant. Thus, being
“nearer” to the constant is actually the same as to be less spread out.

An equivalent of Birkhoff’s Theorem, stating that any doubly stochastic matrix is a convex
combination of permutation matrices, is trivial: A Markov matrix is the convex combination
of deterministic Markov matrices – matrices with exactly one 1 in each row.

The substantial part of Birkhoff’s Theorem is the description of the extremal elements (permu-
taions) of the convex subset of doubly stochastic matrices. For a given Markov operator with
invariant measure µ it can be found a doubly stochastic matrix D with the connection

Qµ(M− I) = D− I

(here I is the identity). Thus, M− I can be written as a convex combination of permutations,
multiplied by Q−1

µ . This seems to be not very interesting.

The infinite dimensional analogon of a stochastic matrix is a Markov operator acting in the
Banach space of continuous functions on a topological space. In a general Banach space we
have no operation “transponation”. Defining the adjoint of an operator as its “transposed”, we
have to declare what means “conserving of constant functions”. Some authors define doubly
stochastic operators as Markov operators, which adjoint has the uniform distribution as the
invariant measure. But this is a special case as well, because it is not clear, what is the uniform
distribution in general, for example, if Z is disconnected. Again, this requires an additional
structure in Z.

Thus, the notion of doubly stochastic matrices cannot be generalized in a natural manner.

Karamata’s inequality does not require ordering and can be generalized. Clearly, inequality
(6) is this generalization. However, inequality Mgp(x) ≤ Mg′p′(x) (Theorem 4) is not a gen-
eralization of inequality (17). For the special case of a doubly stochastic matrix, inequality
Mgp(x) ≤Mg′p′(x) means: y1 + ... + yi(c) ≤ x1 + ... + xj(c) for any real c, where i(c) and j(c) are
the largest indices with yi > c and xj > c.
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In integration theory, majorization is defined via level sets and rearrangements of functions in
a function space on a measure, fixed from the beginning. Like in the finite dimensional case
the rearrangement of a function is, actually, the rearrangement of the underlying state space
and therefore un-physically.
Moreover, majorization in integration theory is based on the pointwise comparison of the dis-
tribution function. This requires the restriction to non-atomic or pure atomic and uniform
measures.
We prefer a construction based on the main functionals. That allows to consider general
probability measures. In Appendix A examples with different supporting points are given.
In integration theory, the object

∫ t

0
g∗(t′)dt′ is defined for the absolute value |g|. We defined

Agp(·) for g. Thus, if gmin is negative, Agp(·) can be a non-decreasing function.

In the literature there are already proposed generalizations of majorization. We refer here to
some of them.
A kind of majorization between two vectors with respect to a fixed measure was used by several
authors. Actually, [4] seems to be the first one.
Grinberg [5] proposed a majorization of pairs of vectors (“weighted arrays”) similar to our
Definition 1 for the finite dimensional case. In contrast to [5] where the convex functions |g−x|
are used for the approximation of convex functions, we used the convex functions (g − x)+.
This seems more natural, because a Markov operator is band conserving.
[5] as well as the majority of the authors propose a definition of majorization in the opposite
direction, where “≺” means “≤” in the corresponding inequalities. The direction we used
was already proposed by physicists (see [17] for a collection of references). In our definition
(g′, p′) ≺ (g, p) holds, if a functional of (g′, p′) is larger then the same functional of (g, p). This
is not typical. Nevertheless, we prefer our definition for a couple of reasons: At first, it coincides
with the direction of time. Thus, this is the right direction from a physical point of view.
It seems, the confusion comes from the fact that the direction of the action of a Markov operator
is ignored. It acts backwards in time and the result is less “spread out” before the action.
Second, given two convex functions and their conjugates, we have equality in Young’s inequality
on the monotone graph:

F1(x) + F ∗1 (y) = xy

F2(x) + F ∗2 (y) = xy

Obviously we have

F1(x) ≤ F2(x) ⇐⇒ F ∗2 (y) ≤ F ∗1 (y)

Thus, the direction of the inequality changes with the change of the type of the compared
objects. Nevertheless, the situation “1” is related to “2” is the same. There is no reason, to
denote the first case “1” ≺ “2”, but the second case “2” ≺ “1”.
And last, comparing pairs, the inequalities H[g′, p′] ≥ H[g, p] and H∗[q′, p′] ≤ H∗[q, p] show
that a entropy functional decreases for states but increases for observables and states. Thus,
the influence of an observable on the entropy is larger than that of a state.
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Appendix A

The discrete and non-uniform distributed case

The case, when Z = {z1, ..., zn} is a finite set with discrete topology, is a typical case, when
the usual methods for problems with non-atomic measures fail. For a better understanding of
the abstract theorems in the previous sections, we summarize here the main definitions and
results for the discrete case. As it is well known, in this case all functions on Z are continuous,
C(Z) = Rn and the set of probability measures is the simplex S∗n ⊂ R

∗
n. We write Rn and R

∗
n

to distinguish the different norms in the n-dim space.
We fix a function g ∈ C(Z) and a measure p ∈ S∗n. Since the topology is discrete, we can
renumber the points z1, ..., zn by means of a permutation Πg in such a way that

−∞ = gn−1 < gn ≤ gn−1 ≤ ... ≤ g2 ≤ g1 < g0 = ∞

This implies a numbering of the components of the measure p = (p1, ..., pn). This numbering
has nothing to do with an ordering of the values pi, which are different, in general. This is a
reason, why it is not possible to start with two ordered vectors. A simultaneously ordering of
two vectors requires equal values pi (equal distribution) and means – from a physical point of
view – indistinguishably states zi.
To compare two function-measures-pairs we have to end up with functions that forget the
ordering during its derivation.
The discrete case is interesting for numerical applications, too. A typical situation is the
approximation of a continuous function g ∈ C(Z) by an elementary function, i.e., an element
of C∗∗ taking only a finite number of values.
Let (Bi) be a disjunct covering of Z (i.e., Bi ∈ B(Z), Bi ∩Bj = ∅,

⋃n

i=1 Bi = Z) and

g =
n
∑

i=1

gi Bi

Considering such a function, we cannot distinguish different states in Bi. Thus, all states in Bi

from g’s-point of view look like a single state zi. Given, in addition, a measure p ∈ S∗(Z), we
can define pi = p(Bi) and are in the situation of a finite discrete space. Considering two such
functions, we have, in general, two different finite states with different dimensions n1 and n2.

A.1 The functionals of a function and a measures

We consider the case Z = {z1, ..., zn} a function g = (g1, ..., gn) ∈ C(Z) and a measure p =
(p1, ..., pn). Since the topology is discrete, we can renumber the points z1, ..., zn is such a way
that gn ≤ gn−1 ≤ ... ≤ g2 ≤ g1.
Now, the functional Mgp(x) = 〈(g − x)+, p〉 is equivalent to

Mgp(x) =
∑

j:gj>x

(gj − x)pj =
i−1
∑

j=1

(gj − x)pj =
i−1
∑

j=1

gjpj − x
i−1
∑

j=1

pj = mi−1 − xti−1

where we defined i = i(x) such that gi ≤ x < gi−1 and

m0 = 0, mi =
∑i

j=1
gjpj

t0 = 0, ti =
∑i

j=1
pj
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We have mn = 〈g, p〉 and tn = 1.
Equivalently, we have

Mgp(x) = max
0≤i≤n

(mi − xti)

This is a convex piecewise affine function defined by the two monotone sequences (gn, gn−1, ..., g2, g1)
(abscissa) and (1 = −tn,−tn−1, ...,−t2−, t1−, t0 = 0) (slope). It goes throw the points (gi, mi−
giti).
For the convex conjugate of such a function we have (see subsection A.3)

M∗
gp(t) = sup

x

(

xt−Mgp(x)
)

= max
0≤i≤n

(giti −mi + git)

Therefor we have

Agp(t) = −M∗
gp(−t) = min

0≤i≤n
(mi + git− giti)

This is a concave piecewise affine function defined by the two monotone sequences
(0 = t0, t1, t2, ..., tn−1, tn = 1) (abscissa)and (g1, g2, ..., gn−1, gn) (slope). It goes throw the points
(ti, mi).
The following pictures show an example with n = 4. We took a function g with gi ≥ 0. There-
fore mi and Agp(t) are monotone increasing. In general, Agp(t) is concave but not monotone.
For example, see the picture on page 21.

Mgp(x) = 〈(g − x)+, p〉

−t0 = 0

−t1

−t2

−t3

−t4 = −1

g4 g3 g2 g1

(g1 − g2)p1

(g1 − g3)p1+

(g2 − g3)p2

(g1 − g4)p1+

(g2 − g4)p2+

(g3 − g4)p3

x

Agp(t)

p3p1 p2 p4 1

m1

m2

g1

g2

g3

g4

−∞

+∞
0 t

〈g, p〉 = m4

m3

Note that gi can be arbitrary, not only positive numbers as it is demanded usually.
Not depending on g and p we have the fixed values Mgp(+∞) = 0 and Agp(0) = 0. Moreover,
we have Agp(1) = 〈g, p〉.
For x ∈ [gi, gi−1], t ∈ [ti−1, ti] we have

Agp(t)− git =
i−1
∑

j=1

(gj − gi)pj = Mgp(x) + (x− gi)ti−1

and therefore

Agp(t) = Mgp(x) + xt− (t− ti−1)(x− gi) ≤Mgp(x) + xt

Thus, (t− ti−1)(x− gi) is the defect of Young’s inequality.
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At the intervall endpoints we have

Agp(ti−1) = Mgp(gi) + giti−1

Agp(ti) = Mgp(gi) + giti

hence

Agp(ti)− Agp(ti−1) = gipi

Mgp(gi+1)−Mgp(gi) = (gi − gi+1)ti

A.1.1 The subdifferentials

The subdifferentials of −∂Mgp(x) and ∂Agp(t) connect the abscissa and slope values (0 =
t0, t1, t2, ..., tn−1, tn = 1) and (g1, g2, ..., gn−1, gn).
The functions

Fgp(x) = − sup ∂Mgp(x)

Ggp(t) = inf ∂Agp(t)

are connected with Mgp(x) and Agp(t) via

Mgp(x) =

∫ ∞

x

Fgp(x
′)dx′, Agp(t) =

∫ t

0

Ggp(t
′)dt′

The aim of the definition of Fgp(x) and Ggp(t) is to handle the subdifferentials as functions.
This are precisely the functions, arising by the definition of Fgp(x) and Ggp(t) as distribution
function and its inverse.

Fgp(x)

g4 g3 g2 g1

1
p4

p3

p2

p1

t

x p3p1 p2 p4 1

g4

g3

g2

g1

Ggp(t)

x

0

The subdifferentials constitue a so called maximal monotone graph Φgp:

(x, t) ∈ Φgp ⇐⇒ x = gk, t ∈ [tk−1, tk]

x ∈ [gk, gk−1], t = tk−1

In particulare, the points (gk−1, tk−1), (gk, tk−1) and (gk, tk) and the line segments between these
points belong to Φgp.
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A.1.2 Level sets, distribution function and its inverse

As usual, the functions Fgp(x) and Ggp(t) are defined, starting with the definition oof level sets

Lg(x) = g−1
(

(x,∞)
)

=
{

z ∈ Z|g(z) > x
}

We have n + 1 level sets:

Lg(x) = L0 = ∅, x ≥ g1

= L1 = B1, g1 > x ≥ g2

= L2 = B1 ∪B2, g2 > x ≥ g3
...
= Ln−1 = B1 ∪ · · · ∪Bn−1, gn−1 > x ≥ gn

= Ln = Z, gn > x

Using the level sets we can define the so-called distribution function Fgp(x) = p(Lg(x))

Fgp(x) = p(L0) = t0 = 0, x ≥ g1

= p(L1) = t1 = p1, g1 > x ≥ g2

= p(L2) = t2 = p1 + p2, g2 > x ≥ g3
...
= p(Ln−1) = tn−1 = p1 + . . . + pn−1, gn−1 > x ≥ gn

= p(Ln) = tn = 1, gn > x

Fgp(x) = p(Lg(x)) =
n
∑

i=0

ti [gi+1,gi)(x)

In the same way we can define the inverse of the distribution function Ggp(t).

Cgp(t) = {x ∈ R|Fgp(x) ≤ t} =

= Cgp(tk) = [gk+1, gk), tk ≤ t < tk
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A.1.3 Majorization

We consider a function g ∈ Rn and a measure p ∈ S∗n and a Markov matrix M and set
p′ = M∗p, p′′ = M∗p′, g = Mg′, g′ = Mg′′. Then, we have the following majorization:
(p′′, g′′) ≺ (p′, g′) ≺ (p, g). This is connected with the inequalities

Mgp(x) ≤Mg′p′(x) ≤Mg′′p′′(x), Agp(t) ≤ Ag′p′(t) ≤ Ag′′p′′(t) .

This is illustrated in the following pictures
Note that the nodes, lie not on lines, because the measures are not uniform ones.

Mgp(x) ≤Mg′p′(x) ≤Mg′′p′′(x)

-
x

asymptote: 〈g, p〉 − x

 
 

 
 	

Agp(t) ≤ Ag′p′(t) ≤ Ag′′p′′(t)

1

1

0

A.2 The functionals of two measures

We consider the case Z = {z1, ..., zn}, and two measures p = (p1, ..., pn) and q = (q1, ..., qn).
Since the topology is discrete, we can renumber the points z1, ..., zn is such a way that

qn

pn

≤
qn−1

pn−1

≤ ... ≤
q2

p2

≤
q1

p1

If some pi = 0, we have qi

pi
= +∞. This implies

qj

pj
= +∞ for all j < i. The points with

vanishing measure are the first ones.
Now, the functional Sqp(x) = supB

(

q(B)− xp(B)
)

is equivalent to

Sqp(x) = max
0≤i≤n

(si − xti)

where we defined i = i(x) such that qi

pi
≤ x < qi−1

pi−1
and

s0 = 0, si =
∑i

j=1
qj

t0 = 0, ti =
∑i

j=1
pj

We have sn = tn = 1.
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Sqp(x) is a convex piecewize affin function going throw the points
(

qi

pi
, si − ti

qi

pi

)

.

For the convex conjugate of such a function we have

S∗qp(t) = sup
x

(

xt− Sqp(x)
)

= max
0≤i≤n

(

qi

pi

ti − si +
qi

pi

t

)

Therefor we have

Tqp(t) = −S∗qp(−t) = min
0≤i≤n

(

si +
qi

pi

t−
qi

pi

ti

)

This is a concave and monotone (in contrast to Agp(t))) piecewize affin function going throw
the points (ti, si).
The following pictures show an example with n = 4.

Sqp(x)

q4

p4

q3

p3

q2

p2

q1

p1

1

x

Tqp(t)

p3p1 p2 p4 1

q1

q2

q3

q4
1

0 t

Note that gi can be arbitrary, not only positive numbers as it is demanded usually.
Not depending on g and p we have the fixed values
Mqp(+∞) = 0, Aqp(0) = 0 and Aqp(1) = 1.
For x ∈ [gi, gi−1], t ∈ [ti−1, ti] we have

Aqp(t)− git =
i−1
∑

j=1

(gj − gi)pj = Mqp(x) + (x− gi)ti−1

and therefore

Aqp(t) = Mqp(x) + xt− (t− ti−1)(x− gi) ≤Mqp(x) + xt

Thus, (t− ti−1)(x− gi) is the defect of Young’s inequality.
At the intervall endpoints we have

Aqp(ti−1) = Mqp(gi) + giti−1

Aqp(ti) = Mqp(gi) + giti

hence

Aqp(ti)− Aqp(ti−1) = gipi

Mqp(gi+1)−Mqp(gi) = (gi − gi+1)ti
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A.2.1 The subdifferentials

The subdifferentials of −∂Sqp(x) and ∂Tqp(t) connect the abscissa and slope values (0 =

t0, t1, t2, ..., tn−1, tn = 1) and
(

q1

p1
, q2

p2
, ..., qn−1

pn−1
, qn

pn

)

.

The functions

Uqp(x) = − sup ∂Sqp(x)

Vqp(t) = inf ∂Tqp(t)

are connected with Sqp(x) and Tqp(t) via

Sqp(x) = 1−

∫ x

0

Uqp(x
′)dx′, Tqp(t) = 1−

∫ 1

t

Vqp(t
′)dt′

The aim of the definition of Uqp(x) and Vqp(t) is to handle the subdifferentials as functions.

Uqp(x)

q4

p4

q3

p3

q2

p2

q1

p1

1
p4

p3

p2

p1

t

0 x p3p1 p2 p4 1

q4

p4

q3

p3

q2

p2

q1

p1

Vqp(t)

x

0

A.2.2 Degenrate measures

In the case, when measure p is degenerate, i.e., there is a Borel set B with p(B) = 0 but
q(B) > 0 there is no radon-Nikodym derivative q/p. Nevertheless, the functions Sqp(x) and
Tqp(t) are well defined, but have some special properties. We illustrate here the case, when
p1 = 0, q1 > 0 and pi > 0 for i = 2, ..., n. Clearly, q1

p1
= ∞ is the largest number. As a result

Sqp(∞) = q1 > 0 and Tqp(0) = q1 > 0.
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Sqp(x)

q2

p2

s1

q1

1

Tqp(t)

1

1

0

q1

The case, when p1 = 0 and q1 = 0 means that state z1 plays no role and can be omit. The state
space becomes (n− 1)- dimensional.

A.2.3 Majorization

We consider two given measures p, q ∈ S∗ and a Markov operator M and set p′ = M∗p,
p′′ = M∗p′, q′ = M∗q, q′′ = M∗q′. The majorization inequalities between the corresponding
functions S(x) and T (t) are shown in the following pictures.
Note that the nodes, lie not on lines, because the measures are not uniform ones.

Sq′′p′′(x) ≤ Sq′p′(x) ≤ Sqp(x)

1
-

x

asymptote: 1− x

 
 
 
 	

Tq′′p′′(t) ≤ Tq′p′(t) ≤ Tqp(t)

1

1

0
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A.3 An excurs to piecewize affine functions

In this Appendix, we showed that in the finite case majorization is an partial order between
piecewize affine functions, coinciding at two given endpoints. The reversal is true as well:
If two piecewize affine functions coincide at the endpoints and satisfy an inequality, then they
are connected via a Markov operator in a special way. We show this in the Appendix B. Here
we collect some facts on piecewize affine functions.
Convex piecewize affine functions are an invariant set for the Legendre-Fenchel tranform, which
makes them especially important for approximations of general convex functions.
We consider convex functions t = F (x), its subdifferential y = ϕ(x), its inverse x = ϕ−1(y) und
its conjugate convex s = F ∗(y).
A convex piecewize affine functions can be given via

• via two monotone sequences (xi)
n
i=1 (abscissa) and (yi)

n
i=0 (slopes);

• as tha maximum over a set of lines F (x) = maxi(ai + yix);

• as a polygon (xi, ti)
n+1
i=0

For our application we have to consider the connection between the first two possibilities.

A.3.1 The function given as monotone sequences

The easiest way to define convex piecewize affine functions can be given via monotone sequences
of abscissas xi and slopes yi

y0 ≤ y1 ≤ y2 ≤ · · · ≤ yn

x1 ≤ x2 ≤ · · · ≤ xn
(47)

with the general property

(xj−1 − xj)(yi−1 − yi) ≥ 0, i = 1, ..., n

For completeness, we set x0 = −∞ and xn+1 = ∞.
The conjugate convex of such a function can be easely calculated. We denote a convexe
piecewize affine function F defined by sequences of abscissas xi and slopes yi by F [x, y]. Since
the subdifferentials of a convexe function and its conjugate constitute the same sets, we have
F ∗ = F ∗[y, x] for a given F [x, y]. Similar notation we use for concave functions defined by
sequences with different monotonicity.
In this notation, the defined functionals reads

Mgp = Mgp[g,−t] ,

Agp = Mgp[t, g] ,

Sqp = Sqp[q/p,−t] ,

Mgp = Mgp[t, q/p] .
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The following pictures are an illustation of a typical example of F (x), ϕ(x), ϕ−1(y) and F ∗(y).

y0

y1

y2

y3

x1 x2 x3

F (x)

y0 y1 y2 y3

x1

x2

x3

s0

s1

s2

s3

F ∗(y)

y0

y1

y2

y3

x1 x2 x3

ϕ(x)

x1

x2

x3

ϕ−1(y)

y0 y1 y2 y3

A.3.2 The function given as the maximum of lines

A function F (x) given as

F (x) = max
0≤i≤n

(ai + yix) ,

i.e. as a maximum over n + 1 lines ai + yix with given sequences (ai)
n
i=0 and (yi)

n
i=0, is allways

a convex piecewize affine function. It may happens that some of the lines play no role for the
maximum. Unlike the previous case, a condition to avoid such lines is more complicated. We
assume that no lines can be omited. Then,

F (x) = ai + yix, xi ≤ x ≤ xi+1

with some x0, ..., xn+1 that must be calculated. We have x0 = −∞, xn+1 = +∞. The other xi

have to satisfy

ai−1 + yi−1xi = ai + yixi .

Hence, we obtain the abszissas

xi =
ai−1 − ai

yi − yi−1

.
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Obviously, the slopes are yi. Corresponding to (47) the sequences xi and yi have to increases
monotonly, i.e.

xi ≤ xi+1 ⇐⇒
ai−1 − ai

yi − yi−1

≤
ai − ai+1

yi+1 − yi

⇐⇒ 0 ≤ ai−1(yi − yi+1) + ai(yi+1 − yi−1) + ai+1(yi−1 − yi)

⇐⇒ 0 ≤ yi−1(ai+1 − ai) + yi(ai−1 − ai+1) + yi+1(ai − ai−1)

⇐⇒ ai−1(yi+1 − yi) + ai+1(yi − yi−1) ≤ ai(yi+1 − yi−1)

⇐⇒ ai ≥ ai−1
yi+1 − yi

yi+1 − yi−1

+ ai+1
yi − yi−1

yi+1 − yi−1

This is a concavity condition for ai with respect to yi.
For the values in the points of intersection we have

ti = F (xi) = ai−1 + yi−1xi = ai + yixi =
ai−1yi − aiyi−1

yi+1 − yi−1

The subdifferential is the polygon

Φ = (−∞, y0) −→ (x1, y0)−→ (x1, y1)−→ (x2, y1)−→ (x2, y2)−→ · · ·

−→ (xi−1, yi−1)−→ (xi, yi−1)−→ (xi, yi)−→ · · · −→ (xn, yn)−→ (+∞, yn)

The convex conjugate can be written as a maximum over lines as well

F ∗(y) = sup
x

(

xy − F (x)
)

= max
0≤i≤n

(

sup
xi≤x≤xi+1

(

xy − ai − yix
)

)

=

= max
0≤i≤n

(

−ai + sup
xi≤x≤xi+1

x(y − yi)

)

=

= max
0≤i≤n

(

−ai +

{

xi(y − yi), y ≤ yi

xi+1(y − yi), yi ≤ y

)

=

= max
0≤i≤n

({

−ai + xi(y − yi), y ≤ yi

−ai + xi+1(y − yi), yi ≤ y

)

=

= max
1≤i≤n

(

− ai − xiyi + xiy
)

=

= max
1≤i≤n

(

bi + xiy
)

with bi = −ai − xiyi. We obtain

F ∗(y) = bi + xiy = −ai − xiyi, yi−1 ≤ y ≤ yi

and F ∗(yi) = si = −ai. Analogously we obtain ti = −bi.

A.3.3 The function given as a polygon

Given the points

(t0, s0), (t1, s1), (t2, s2), ..., (tn, sn) .
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Since in our application we used cancave functions, we look for the concave hull T (t) of this
points. We start with the ansatz

T (t) = min
0≤k≤n−1

(yk + hk+1t)

with

hk+1 =
sk+1 − sk

tk+1 − tk

yk = sk − hk+1tk =
sktk+1 − sk+1tk

tk+1 − tk

We get

T (t) = min
0≤k≤n−1

(

sktk+1 − sk+1tk + tsk+1 − tsk

tk+1 − tk

)

=

= min
0≤k≤n−1

(

sk(tk+1 − t) + sk+1(t− tk)

tk+1 − tk

)

This is just the convex combination of the values. yk + hk+1t are line segments. We have
T (tk) = sk as expected. This is a piecewize affine function given via t0, t1, ..., tn (abscissa) and
h1, h2, ..., hn (slopes).
As in the previous case, it may happens that some of the points (ti, si) are not necessary. To
avoid this situation, the points have to satisfy the convexity condition

sktk−1 − sk+1tk−1 − sk−1tk + sk+1tk + sk−1tk+1 − sktk+1 ≥ 0 .

A.3.4 Summary

We summarize the transitions from one representation into the other in a table:

F (x) F ∗(y)

mon. sequences (xi, yi) (yi, xi)

lines max
0≤i≤n

(−si + yix) max
1≤i≤n

(−ti + xiy)

polygon points (xi, ti) (yi, si)

xi =
si − si−1

yi − yi−1

yi =
ti − ti−1

xi − xi−1

ti = xiyi − si si = xiyi − ti

=
siyi−1 − si−1yi

yi − yi−1

=
tixi−1 − ti−1xi

xi − xi−1

max
0≤i≤n

(

ti−1
xi − x

xi − xi−1

+ ti
x− xi−1

xi − xi−1

)

max
1≤i≤n

(

si−1
yi − y

yi − yi−1

+ si

y − yi−1

yi − yi−1

)
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Appendix B

The construction of a general Markov matrix

We denote in the following by y ≺
 

x the classical majorization of two given vectors in R
n.

We have y ≺
 

x if and only if there is a doubly stochastic matrix D∗ with y = D∗x. The
Robin Hood method is a tool to construct D∗ for two given vectors x and y with y ≺

 

x. This
method works because a doubly stochastic matrix can be presented as a product of matrices of
a special form. Those special matrices can be found in a constructive and intuitive way, this is
the Robin Hood method.
The matrix

T = αI + (1− α)C(j, i)

where α ∈ [0, 1] and C(j, i) is a transposition, i.e., a matrix interchanging the i-th and j-
th states, is a special doubly stochastic matrix, the convex combination of the identity and
transposition.
It can be shown that any doubly stochastic matrix D∗ can be presented as a product

D∗ = Tk · · ·T1

The Robin Hood method finds successivelly the matrices Ti. From this representation follows
Birkhoff’s famos theorem, stating that any doubly stochastic matrix is a convex combination
of permutations matrices, or equivalently, the permutations matrices are the extremal points
of the convex set of doubly stochastic matrices. We have

D = Tk · · ·T1 =
(

αkI + (1− αk)C(ik, jk)
)

· · ·
(

α1I + (1− α1)C(i1, j1)
)

=

=
∑

qi

∏

l

C(il, jl) =
∑

qiGi

where we used that a permutations matrix can be written as a product of transpositions.
All this statements fail in the case of a general Markov matrix. Even the simultaneous ordering
of two vectors – neccesary for the definition of the majorization what is the starting point of
the Robin Hood method – is not possible if the underlying state space has no uniform measure.
In the following, we propose a method inspired by the intuitive physical definition of probabili-
ties as convex combinations of the results of a finite number of experiments. This allowds us to
use Robin Hood method for general Markov matrices after the transformation in a state space
with natural uniform measure.

B.1 The classical Robin Hood method

Given two sequences x and y with y ≺
 

x, we construct a doubly stochastic matrix D∗ with
y = D∗x by the so-called Robin Hood method.
The Robin Hood method starts with two ordered vectors x↓ and y↓. To achieve this, at first one
has to rearange x and y in decreasing order, i.e. one has to permute the vectors, each of them
by its own permutation. Let Πx and Πy be two permutation matrices such that Πxx = x↓ and
Πyy = y↓. Actually, a permutation matrix defines a renumbering of the states of the underlying
state space. Since in general, the permutation matrices Πx and Πy are diffent, this implies that
the state space is renumbered in a diffent way what is of cause unphysical unless, the states of
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the space are indistinguishable. In such a space only the uniform measure  

∗ has a physical
sense. This is the field of application of the classical majorization theory.
Given two monotone decreasing sequences x and y with y ≺

 

x, we construct a doubly stochastic
matrix D∗ with y = D∗x constructing a sequence of matrices

T = λI + (1− λ)Cji

equalizing the sequences x and y starting from their middle. After constructing a matrix T,
a new vector x′ = Tx is defined and the procedure is repeated with the vectors x′ and y.
The algoritm terminates after a finite number k of steps when x′ = Tx = y. We obtain
D = Tk · · ·T1

We describe one iteration step: Starting with two vectors x and y

x1 ≥ x2 ≥ . . . ≥ xj ≥ . . . ≥ xi ≥ . . . ≥ xn

∨ ∨ ∨ ∧ ∧
y1 ≥ y2 ≥ . . . ≥ yj ≥ . . . ≥ yi ≥ . . . ≥ yn

we define the indizees i and j as the nearest idizees, for which y and x are not balance out yet.
Thus,

j = max
k

(xk > yk), i = min
k

(xk < yk)

Since
∑

i xi =
∑

i yi, we have j < n and i > 1. We set

λ = max

{

yj − xi

xj − xi

,
xj − yi

xj − xi

}

(48)

(What value is taken is equivalent to the question wether yi + yj is larger then xi + xj.)
It follows λxj + (1− λ)xi ≥ λxi + (1− λ)xj and λ ≥ 1

2
, because of

yj − xi

xj − xi

+
xj − yi

xj − xi

= 1 +
yj − yi

xj − xi

≥ 1

We define T = λI + (1− λ)Cji. Then

x′Tx = (x1, . . . , xj−1, yj, ..., xj + xi − yj, xi+1, . . . , xn)

if in (48) λ =
yj−xi

xj−xi
or

Tx = (x1, . . . , xj−1, xj + xi − yi, ..., yi, xi+1, . . . , xn)

otherwize. In any case, the number of nonequal values in the vectors x and y is reduced at
least by 1. In the case, when xj + xi = yj + yi this number reduces by 2.
Finally, the desired doubly sochastic matrix is D = Π−1

y D0Πx.

B.2 Rational probabilities

From a physical point of view the probability of finding ik times a state zk during n equivalent
experiments is pk = ik

n
. It is natural to define the statistical state of the physical system as

z =
i1
n

′z′1 + ... +
im
n

′z′m = p1
′z′1 + ... + pm

′z′m
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with i1 + ... + im = n or pi ≥ 0 and p1 + ... + pm = 1. Thus, in a natural way arise rational
probabilities as collections of experiment results with equal weights. Passing to the limit n−→∞
we obtain general probability measures in Banach spaces.
Conversely, starting with m rational numbers p1, ..., pm with pi ≥ 0 and p1 + ...+pm = 1 we can
construct a homogeneuos state space with n states, by taking n as the least common multiple
of the denominators of the pi. Doing so, we obtain m integers ik = pkn with i1 + ... + im = n.
From a physical point of view this means that we consider instead of one state zk, ik copies
of this state. Instead of m-dimensional spaces C = Rm and C∗ = R

∗
m we obtain n-dimensional

space. C = Rn and C∗ = R
∗
n. Since the result of every experiment is counted with the same

weight, the uniform measure  ∗n ∈ S∗n plays a special role.

B.3 Special Markov matrices

B.3.1 Special Markov matrices for rational measures

Let n = i1 + ...+ im, p = 1
n
(i1, ..., im) a measure in S∗m and  

∗ = 1
n
(1, ..., 1) the uniform measure

in S∗n. We define two matrices Gp and Hp, depending on a given measure p,

G =







































1 0 · · · 0
...

...
. . .

...
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
...

...
. . .

...
0 0 · · · 1







































, H =











1
i1
· · · 1

i1
0 · · · 0 · · · 0 · · · 0

0 · · · 0 1
i2
· · · 1

i2
· · · 0 · · · 0

...
...

...
...

0 · · · 0 0 · · · 0 · · · 1
im

· · · 1
im











Gp consists of i1, ..., im equal rows, Hp of equal columns. Obviously, G and H are Markov
matrices Gp ∈M(Rm, Rn), Hp ∈M(Rn, Rm) with the properties

Gp m =  n, G∗
p 
∗
n = p, Hp n =  m, H∗

pp =  

∗
n, HpGp = Im, G∗

pH
∗
p = Im (49)

Here, ∗ denotes transponation.
If we have ij = 0 for some j, we omit the states zj, getting a problem with few dimensions.
This case means that the states zj did not occur in the experiment.

B.3.2 A doubly stochastic matrix from two measures

Given two measures p and q and a Markov matrix M with q = M∗p, we define a matrix
D : Rn−→ Rn by

D = GpMHq . (50)

Here n is the least common multiple of all denominators of p and q. We denote by D the set
of doubly stochastic matrices in Rn. We have D ∈ D. This follows form

D n = GpMHq n = GpM m = Gp m =  n

D∗
 

∗
n = H∗

qM
∗G∗

p 
∗
n = H∗

qM
∗p = H∗

qq =  

∗
n
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(positivity is obvious), where we used the properties (49).

Considering matrices D : Rn−→ Rn, we restrict ourself to a special
case to simplifies the notations. In general, the Markov matrix
M can act between different spaces Rm1 and Rm2 and the doubly
stochastic matrix D can act between different spaces Rn1 and Rn2 ,
too. This allows us to don’t care about the least common multiple
of all denominators of p and q. n1 is the lcm of q and n2 is the lcm
of p. Moreover, possible states we have to omit, are also covered by

M
Rm1 −−→ Rm2

Hq

x









y
Gp

Rn1 −−→ Rn2

D

this construction. The connection of the spaces in the general case is illustrated in the diagram.

B.4 Construction of a Markov matrix
from two pairs of a continuous function and a probability mea-
sure

Given two pairs composed of a continuous function and a probability measure (g, q) and (f, p)
in Rm with (g, q) ≺ (f, p). We look for a Markov matrix M with

f = Mg

q = M∗p

We construct such a M by transforming the promblem in a homogeneus space Rn. At first we
look for a heuristic D ∈ D related to this problem and using the construction from the previous
subsection.
From f = Mg and (49) it follows that for any measure α we have f = Mg = MHαGαg. Hence,
for any measure β we have

Gβf = GβMHαGαg

Wie define

D = GβMHα

y = Gβf

x = Gαg

We have D ∈ D. To satisfy q = M∗p we set, according to (50), α = q and β = p.
Let Πx and Πy be two permutation matrices such that Πxx = x↓ and Πyy = y↓.
This suggests the following algorithm:

1) From p and q we construct four matrices G∗
p and H∗

p and G∗
q and H∗

q such that G∗
p 
∗ = p,

H∗
qq =  

∗, G∗
q 
∗ = q and H∗

pp =  

∗.

2) We set y = Gpf and x = Gqg.

3) We define permutations Πx and Πy such that Πxx = x↓ and Πyy = y↓ are ordered in
decreasing order.

4) We construct D0 ∈ D using the Robin-Hood method and satisfying y↓ = D0x
↓.

5) We set M = HpDGq with D = Π−1
y D0Πx.

For the proof we have to show M ∈M, q = M∗p and f = Mg.
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1) As a product of three Markov matrices, M is a Markov matrix, too.

2) Since M∗ = G∗
qD

∗H∗
p we conclude

M∗p = G∗
qD

∗H∗
pp = G∗

qD
∗
 

∗ = G∗
q 
∗ = q .

3) From the definitions of x and y it follows

Mg = HpDGqg = HpDx = Hpy = HpGpf = f

The new definition of majorization is connected with the old one via

(g, q) ≺ (f, p) ⇐⇒ Gpf ≺ 

Gqg

This will be proved in the next subsection.
Note that rationallity is only a property of the measures. The functions f and g can be arbitrary,
even irrational.

B.5 Majorization and the existence of a Markov matrix

Theorem 6 in this subsection gives the equivalence of inequalities between pairs of monotone
sequences, majorization and the existence of Markov matrices, connecting them.
Given two pairs of monotone sequences

0 = s0 < s1 < ... < sm1 = 1

gm1 < ... < g1

and

0 = t0 < t1 < ... < tm2 = 1

fm2 < ... < f1

We define two sequences (measures)

qi = si − si−1, i = 1, ...,m1

pi = ti − ti−1, i = 1, ...,m2

and y = Gpf ∈ Rn2 , x = Gqg ∈ Rn1 . This is the general situation, illustated in the diagram
on page 50. We have the following
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Theorem 6 Let F be an arbitrary convex function. The following statements are equivalent:

(i)
∑m2

i=1 piF (fi) ≤
∑m1

i=1 qiF (gi)

(ii) 1
n2

∑n2

j=1 F (yj) ≤
1
n1

∑n1

j=1 F (xj)

(iii) (g, q) ≺ (f, p)

(iv) y ≺
 

x

(v) Mgq(x) ≥Mfp(x) for x ∈ R

(vi) Agq(t) ≥ Afp(t) for t ∈ [0, 1]

(vii) ∃ M ∈M(Rm2 , Rm1) with f = Mg, p = M∗q.

Proof:
(i) ⇐⇒ (iii) is the new definition of majorization.
(i) ⇐⇒ (v) ⇐⇒ (vi) follows from Theorem 4
(ii) ⇐⇒ (iv) follows from the classical majorization theory in linear algebra.
We prove (ii) ⇐⇒ (i): We have pi = αi/n2, qi = βi/n1. Gpf is a vector, containing αi times
fi. Thus we have

1

n2

n2
∑

j=1

F (yj) =

m2
∑

i=1

αi

n2

F (fi)

Analogously follows a similar equality for the right had sides of the inequalities. This shows
(ii) ⇐⇒ (i).
We show (ii) =⇒ (vii). From (ii) follows (iv) and therefore the existence of a doubly stochastic
matrix D with y = Dx. Setting M = HpDGq, we showed in the previous subsection that M
is a Markov matrix and f = Mg, p = M∗q hold.
(vii) =⇒ (iii) is the definition of majorization �

B.6 Construction of a Markov matrix
from two pairs of measures

Given two pair of measures (t, q) and (s, p) in Rm with (t, q) ≺∗ (s, p). We look for a Markov
matrix M with

q = M∗p

t = M∗s

For simplicity, we assume qi > 0, pi > 0 for i = 1, ...,m. The general case can be handled in
the same way but the vectors x and y can not be defined explicitely but as soltions of some
linear systems, in general underdetermined ones.
We reduce this case to the just investigated case, seeking for a Markov matrix X satisfying

p = X∗q

f = Xg

with Qqf = t and Qpg = s. Here Qq is the multiplication operator.
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Clearly, the matrix X is the physical inverse one to M. Both matrices are connected via

QqX = M∗Qp

QpM = X∗Qq

Now, we have the following algorithm:

1) From p, q, r, s we construct two vectors f = Q−1
q t and g = Q−1

p s.

2) We construct a Markov matrix X from p = X∗q and f = Xg from two pair of a continuous
function and a probability measure. From the general theory we know that (g, q) ≺ (f, p).

3) We set M = Q−1
p X∗Qq.

We have M∗ = QqHqDGpQ
−1
p .

For the proof we have to show M ∈M, q = M∗p and t = M∗s.

1) Proof of q = M∗p:

M∗p = QqHqDGpQ
−1
p p = QqHqDGp = QqHqD = QqHq = Qq = q

2) Proof of t = M∗s:

M∗s = QqHqDGpQ
−1
p s = QqHqDx = QqHqy = QqHqGqQ

−1
q t = QqQ

−1
q t = t

3) We have M = Q−1
p G∗

pD
∗H∗

qQq. Consequentely,

M = Q−1
p G∗

pD
∗H∗

qQq = Q−1
p G∗

pD
∗H∗

qq = Q−1
p G∗

pD
∗
 

∗ = Q−1
p G∗

p 
∗ = Q−1

p p =  

The new definition of majorization is connected with the old one via

(q, t) ≺∗ (p, s) ⇐⇒ GqQ
−1
q t ≺

 

GpQ
−1
p s



54 REFERENCES

References

[1] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H.P. Lotz, U. Moustakas, R. Nagel, F.
Neubrander, U. Schlotterbeck, One-parameter Semigroups of Positive Operators, Springer
1986.

[2] Colin Bennett, Robert C. Sharpley, Interpolation of Operators, Academic Press, Orlando,
1988.

[3] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, SIAM, 1987.

[4] L. Fuchs, A new proof of an inequality of Hardy-Littlewood-Polya, Mat. Tidsskr. B. 1947.
p. 53-54

[5] D. Grinberg et al.,
Weighted majorization and a result stronger than Fuchs – MathLinks topic #104714

[6] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1952.

[7] S. Kaplan, The Bidual of C(X) I, North Holland, 1985.

[8] S. Kaplan, Lebesgue Theory in the Bidual of C(X), American Mathematical Society, 1996.

[9] Elliott H. Lieb, Michael Loss, Analysis, Graduate Studies in Mathematics, vol. 14

[10] Albert W. Marshall, Ingram Olkin, Barry C. Arnold, Inequalities: Theory of Majorization
and Its Applications, Springer, 2nd edition, 2009.

[11] A. Papoulis Probability, Random Variables, and Stochastic Processes, 2nd ed. New York:
McGraw-Hill, 1984.

[12] Z. Semadeni, Banach Spaces of Continuous Functions, Warszawa 1971.

[13] J. Michael Steele, The Cauchy-Schwarz master class: an introduction to the art of mathe-
matical inequalities, Cambridge University Press, 2004.

[14] H. Stephan, Lyapunov functions for positive linear evolution problems, ZAMM Z. Angew.
Math. Mech., 85 (2005) pp. 766-777

[15] H. Stephan, A mathematical framework for general classical systems and time irreversibil-
ity as its consequence. WIAS Berlin 2011; Preprint n◦1629.

[16] H. Stephan, Microscopic evolution equations in statistical physics. WIAS Berlin 2014;
Preprint
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