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Abstract

We derive drift-diffusion systems describing transport processes starting
from free energy and equilibrium solutions by a unique method. We include
several statistics, heterostructures and cross diffusion. The resulting systems
of nonlinear partial differential equations conserve mass and positivity, and
have a Lyapunov function (free energy). Using the inverse Hessian as mobility,
non-degenerate diffusivity matrices turn out to be diagonal, or—in the case
of cross diffusion—even constant.
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1 Introduction

A common problem of importance in applied mathematics is the description of the
transport of particles under several influences in a spatial domain. Of particular
interest is usually the time evolution of the concentrations of each type of particle,
which we can describe by drift-diffusion systems ([1, 10, 14]). Typical problems
of this kind are the transport of electrons and holes in semiconductor devices and
the transport of impurities during the production of such devices. These problems
are characterized by global electrostatic interaction of charged particles, anisotropic
materials, heterostructures, spatial change of temperature and several statistics such
as Boltzmann or Fermi-Dirac statistics ([1, 6, 3]).

Several processes can influence the time evolution of the concentrations studied.
This paper will take the following processes into consideration.

Diffusion. Diffusion is the spatial redistribution of particles forced by their own
kinetic energy. In this regard, diffusion is a typical phenomenological effect. We will
describe it by means of effective driving forces, although these driving forces cannot
be understood in a microscopic sense.

Drift. Drift is the transport of particles forced by a given outer field or a field
generated by the particles in a self-consistent manner (e.g., an electrostatic field for
charged particles).

Heat transport. It is clear that all processes depend on temperature. In many
applications, it is necessary to consider a space dependent temperature field.

Let Ω ⊂ R
d be a spatial domain and x ∈ Ω. We denote time by t ≥ 0 and the

concentrations of m species X1, ..., Xm by u1(x, t), ..., um(x, t). Our goal is the
derivation of a system of type u̇ = E(u) that describes the evolution of a vector of
concentrations u = (u1, ..., um).

We know that a more exact description of the above mentioned processes has to
be a microscopic one. Concentrations are an idealized point of view of an ensemble
of classical point particles (or pseudo particles). We have to consider nj particles
of species Xj moving in some random medium. Unfortunately, this underlying
microscopic structure is only partly known. Moreover, even if the microscopic model
were well known, there would be no hope to derive macroscopic equations from
microscopic ones, because of the complexity of the problems. This is regrettable,
because from an analytical point of view, the microscopic equations are much simpler
and have nice properties, like the existence of stationary solutions, time-decreasing
Lyapunov functions (second law of thermodynamics), and positivity of the solutions.
Therefore, we do not try to derive macroscopic equations starting from microscopic
models. But in some simple cases—if there is no self-consistent interaction and
many-particle effects can be neglected—the concentrations can be understood as
probability densities. In these situations, microscopic and macroscopic equations
coincide and should have the same properties. This is an important tool for the
validation of the macroscopic equations.
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We are going to derive evolution systems with the following general basic properties:

Conservation of positivity: uj(x, 0) ≥ 0 =⇒ uj(x, t) ≥ 0, ∀ t > 0.

Existence of equilibrium concentrations u∗j(x), at least in the simplest situa-
tions.

Conservation of mass:
∫

Ω
uj(x, 0)dx = 1 =⇒ ∫

Ω
uj(x, t)dx = 1, ∀ t > 0.

Second law of thermodynamics: There is a Lyapunov function Φ(u) called free
energy and some concentration u∗ with Φ(u) ≥ Φ(u∗), E(u∗) = 0, and d

dt
Φ(u) ≤ 0.

There is ample evidence that the difficulties of the mathematical analysis and nu-
merical calculations of the evolution systems closely depend on these properties (see,
e.g., [7, 8]). The derivation of evolution systems in a thermodynamically consistent
manner was initiated in [1].

This paper is organized as follows: In section 2, we recall some basic properties
of microscopic stochastic models and compare them with the simplest macroscopic
problems. In section 3, we define the structure of the free energy and derive drift-
diffusion equations for single species. In section 4, we derive drift-diffusion systems
for many species, considering in detail the case when the many-species free energy
is a sum of one-species and pseudo-species free energies. In section 5, we derive
systems of equations for general drift-diffusion problems including a temperature
field T (x, t).

Notations. Indices counting species run from 1 to m and are denoted by i or j.
Indices of the components of d-dimensional objects are denoted by α or β. If a is a
d× d matrix, a∗ its transpose and f and g are d-Vectors, then

〈af, g〉 = 〈f, a∗g〉 =

d∑
α,β=1

∫
Ω

aαβ(x)fα(x)gβ(x)dx .

Moreover, we denote the scalar product of scalar valued functions by 〈·, ·〉.
A function f(x) ≡ 1 is indicated by �. We will often use operators D with kernel
�. A typical example is D = G∇ = G grad. Here, G is a d × d matrix. Thus for
a fixed f , we have Df : R−→ R

d. For the adjoint D∗, we have D∗f : R
d −→ R, so in

our example, D∗ = −∇G∗ = −div G.

We will use a dot to denote the derivative with respect to time, i.e. ġ = ∂
∂t
g(t) or

ġ = d
dt
g(t).

We formulate the results in the form of theorems. Since we are interested in mod-
eling, the proofs are only formal.

2 A short report on microscopic modeling

Let us recall the main properties of stochastic microscopic models. For further
information the reader is referred to [19, 21, 11]. Let z ∈ Z be the state and Z the
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state space of the interesting physical system. The state z is the set of parameters,
necessary to distinguish two systems. Let W (z, t) be the probability density function
of the state z at time t. The problem is solved completely if this quantity is known
for all times.

It is well known that W (z, t) can be calculated for a given initial density W0(z) =
W (z, 0) by solving the Kolmogorov–Chapman equation

Ẇ (t) = AW (t) , (1)

where A is the generator of a Markov semigroup. In case that Z is a manifold in
R

n, A has the form

(AW )(z) =
n∑

i,j=1

∂2

∂zi∂zj

(
bij(z)W (z)

)
−

n∑
i=1

∂

∂zi

(
ai(z)W (z)

)
+

+

∫
Z

(
Q(z′, z)W (z′) −Q(z, z′)W (z)

)
dz′ . (2)

Here, ai(z), bij(z), and Q(z, z′) ≥ 0 are suitable coefficient functions, and B =
(bij(x)) is a positive semidefinite matrix. The integral is to be understood as a
principle value integral.

In general, equation (1) is to be understood in a weak sense, and W is the density
of a probability measure that may not exist. In this paper, we do not consider
regularity problems and will assume that the underlying measures have densities
with respect to the Lebesgue measure. Looking at the problem from a physical
point of view, we will assume that all quantities are well defined, and all equations
have a solution. Assume further that the solutions of the instationary equations are
unique and globally defined.

The microscopic model has the following important properties.

Theorem 1 Let W (z, t) be the probability density of some Markov process. Then
W (z, t) is the unique solution of equation (1) and the following properties hold:

1. The operator A has the structure (2) and is linear.

2. The equation (1) conserves positivity: W0(z) ≥ 0 =⇒ W (z, t) ≥ 0, ∀ t > 0.

3. The equation (1) conserves mass:
∫

Z
W (z, t)dz =

∫
Z
W0(z)dz = 1, ∀ t > 0.

4. If W (z, t) converges in time to W ∗, then AW ∗ = 0.

5. The stationary equation AW ∗ = 0 has at least one nonnegative solution.

6. Any convex function F : R−→ R not depending on A generates a Lyapunov
function of the form

Φ[W ] = Φ(t) =

∫
Z

F

(
W (z, t)

W ∗(z)

)
W ∗(z)dz , (3)
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with the property

d

dt
Φ(t) = −

∫
Z

n∑
i,j=1

F ′′ (θ) θiθjbij(z)W
∗(z, t)dz −

−
∫
Z

∫
Z

(
F (θ) − F (θ′) − F ′(θ′)(θ − θ′)

)
W ∗(z)Q(z, z′)dz dz′ ≤ 0 .

Here, we have set

θi =
∂

∂zi
log

W (z, t)

W ∗(z)
, θ =

W (z, t)

W ∗(z)
, θ′ =

W (z′, t)
W ∗(z′)

.

For the proof, see [19, 21] and the references there.

The microscopic description can serve as a starting point to derive macroscopic
equations. This is a very hard problem, and we are not going to derive macroscopic
equations in a rigorous manner. We are rather looking for microscopic equations
that can be compared with the macroscopic ones in simple situations.

Let us assume that the state of one particle is z. Considering n1 + ... + nm = n
particles of m species X1, ..., Xm, we have to investigate a microscopic equation for a
probability density W (z11, ..., z1n1 , ..., zmnm , t), a function depending on n parameters
zi and time t. To begin with, we will assume that nj particles of species Xj can
be described by a one-particle probability density W (z1, ..., zm, t). We will later
try to improve this simplification by using self consisting interactions (mean fields),
nonlinear material coefficients and the correct statistics, which will describe how to
count nj particles for a given macroscopic problem. More precisely, this means that
in order to describe a many-particle problem by a one-particle equation, we have to
choose a specific function of type (3) from all possible convex functions.

Inspecting classical particles, we recall that the state of one particle is given by its
space coordinate x and its momentum or velocity v, i.e., z = (x, v) ∈ R

2d. Here,
the evolution of the velocity is determined by some forces (Newton’s law), and the
space coordinate is varying according to the velocity. Supposing that the velocity
is already relaxed to an equilibrium distribution, we can assume that the state of
one particle is given by the space coordinate x ∈ Ω ⊂ R

d. For the general Brownian
motion, [20] explicitly gives an equation for the (v, x)−→ (x) reduced problem. These
results show that there are good reasons to reduce the problems if the temperature
is constant. Besides, they demonstrate how the reduced equation implicitly depends
on the equilibrium distribution of the velocity.

To derive models with a non-constant temperature field, we also have to take into
account the velocity, which models the energy transfer between the particles and
the medium. It is not even clear how to define a constant equilibrium quantity like
temperature in the non-equilibrium case. Therefore, we model the dependence on
temperature in section 5 in a purely phenomenological way.
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The reduction leads to a probability density function W (x1, ..., xm, t) with xi ∈ Ω.
W (x1, ..., xm) is the probability density function finding the particles of type i at
point xi. The equation for the evolution of W is equation (1)–(2), where z =
(x1, ..., xm) is a m×d–dimensional parameter. The microscopic Lyapunov functions
are

Φ[W ] =

∫
Z

F

(
W (x1, ..., xm)

W ∗(x1, ..., xm)

)
W ∗(x1, ..., xm)dx1 · · · dxm , (4)

with any convex function F : R−→ R and a stationary solution W ∗ satisfying
AW ∗ = 0.

As usual, the macroscopic concentration ui(x) are assumed to be one-particle prob-
ability densities and are defined as

ui(x) =

∫
Ωm−1

W (x1, ...xi−1, x, xi+1, ..., xm)dx1 · · · dxi−1dxi+1 · · · dxm , i = 1, ..., m. (5)

From the norm condition
∫

Ω
W (x)dx = 1 it follows the mass conservation of each

species: ∫
Ω

ui(x)dx = 1 , i = 1, ..., m . (6)

Assuming that u = (u1, ..., um) is the solution of some equation u̇ = E(u), the
linearity of E follows from the linearity of A. The structure of this operator can be
described.

Theorem 2 Let u = (u1, ..., um) be the solution of some linear evolution equation
u̇ = E(u), which conserves mass (6) and positivity. Then u = (u1, ..., um) is the
solution of a system

u̇j = Ajuj +

m∑
j �=i=1

Cijui +

m∑
j �=i=1

eij(ui − uj), j = 1, ..., m , (7)

where the operators Aj are of type (2) and the operators Cij are bounded integral
operators of the type

(Cijf)(x) =

∫
Ω

cij(x, y)f(y)dy− f(x)

∫
Ω

cij(y, x)dy ,

with functions cij(x, y) ≥ 0 that are connected with the nonnegative constants eij by

eij ≥
∫

Ω

cij(y, x)dy .

The proof will be presented in [21].

Neglecting nonlinear effects, interaction of particles of the same kind (many-particle
effects of one species) and other characteristics of the particles (e.g., velocity), a gen-
eral evolution system for the concentrations of m species has to be of this structure.
Let us point out that this system has a diagonal main part. This holds not only for
linear systems, but also for nonlinear non-degenerate ones. If a nonlinear system
u̇ = E(u) contains unbounded off-diagonal operators, they have to degenerate.
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3 Drift-diffusion problems

In this section, we are going to derive an evolution equation for the drift and diffusion
of one species. For this purpose, we start from a given free energy Φ and a given
reference concentration u∗. In the case of no self-consistent interaction this should
be the equilibrium solution.

3.1 The structure of the free energy

As usual, the free energy is a function of u and u∗,

Φ(u) =

∫
Ω

F (u(x), u∗(x))dx ,

with some function F that describes the local dependence of the free energy. It
consists of a chemical part ΦC(u) and a self-consistent interaction part ΦI(u). As
usual, we assume

Φ(u) = ΦC(u) + ΦI(u) .

This ansatz is common [5, 25], but seems to be correct only in the Boltzmann case.

We assume that ΦI(u) describes self-consistent interaction generated by a nonlocal
interaction field described by a linear symmetric operator K,

ΦI(u) =
1

2

∫
Ω

u(x)(Ku)(x)dx ,

where

(Ku)(x) =

∫
Ω

k(x, y)u(y)dx, k(x, y) = k(y, x) .

As an example, this field can be understood as the electrostatic field. This field is
generated by fixed charges in the domain and on the boundary, as well as by the
diffusing particles them self. Neglecting dynamical effects, we assume that this field
is instantaneously given by position and type of the particles. In this case, K is the
solution operator of the Poisson equation including boundary conditions.

The chemical part ΦC(u) contains the statistics of the problem, describing how
many-particle effects have to be considered using a one-particle picture. ΦC(u) has
to be of type (3) with a special convex function. In general (for heterostructures),
u(x) and u∗(x) can be nonsmooth. If the particles can pile up on interfaces or in
points, the concentration can be a measure and u(x) is not defined. Looking for
free energies for general situations, the definition of the free energy has to take into
account this behaviour.
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We collect several definitions of the free energy depending on the considered problem
(see [19]):

Φ(u) = sup
g∈C

(∫
Ω

g(x)p(dx) −
∫

Ω

G
(
g(x)

)
p∗(dx)

)
= (8)

=

∫
Ω

F

(
p

p∗RN
(x)

)
p∗(dx) = (9)

=

∫
Ω

F

(
u(x)

u∗(x)

)
u∗(x)dx = (10)

=

∫
Ω

F̃ (u(x))dx (11)

Here, F = G∗ is the convex conjugate of G, p
p∗RN is the Radon-Nikodym derivative

of p with respect to p∗, and C is a suitable set of test functions.

In the most general case, if the concentrations are Radon measures, (8) is the correct
definition of the free energy. If p is Radon-Nikodym differentiable with respect to
p∗, we can consider (9) instead of (8). If, moreover, p and p∗ are differentiable with
respect to the Lebesgue measure with densities u and u∗ resp., we can consider (10).
If, finally, the equilibrium density is smooth enough, it is not necessary to point out
the dependence on u∗, and (11) can be taken with some convex F̃ .

As already mentioned, not caring about regularity, we will assume that all measures
are differentiable with respect to the Lebesgue measure. Thus, we will use expression
(10).

Since F is convex, the free energy is bounded from below by Jensen’s inequality.

In the case of m species we have u = (u1, ..., um), and in general the free energy is
of the form

Φ(u) =

∫
Ω

F
(
u1(x), ..., um(x)

)
dx .

Here, F : R
m −→ R is a convex function of m variables. The gradient

∂F (u) =

⎛
⎜⎝

∂F (u)
∂u1
...

∂F (u)
∂um

⎞
⎟⎠

is a monotone operator ∂F : R
m −→ R

m. The solution of the equation ∂F (u) = λ
is uniquely determined by its inverse u = ∂F−1(λ). The second derivative ∂2F :

R
m −→ R

m ×R
m is for fixed u a m×m matrix—the Hessian. Its inverse

[
∂2F (u)

]−1

is the inverse Hessian. ∂2F (u) and its inverse are positive semidefinite matrices if
F is strict convex.

If F (u) is the sum of convex functions of one species F (u) =
∑m

i=1 Fi(ui), then
∂2F (u) = diag(F ′′

1 (u1), ..., F
′′
m(um)) is diagonal.
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For a unique notation, we set for one species u

∂F (u) = F ′(u), ∂2F (u) = F ′′(u),
[
∂2F (u)

]−1
=

1

F ′′(u)
.

3.2 Examples of the free energy

Here, we examine some examples for the chemical part of the free energy. This is the
logarithm of the number of possibilities to arrange the particles. This number has
to take into account the distinguishability of particles. Describing a many-particle
problem simplified by one-particle equations, this number tells us how to improve
our one-particle picture for many particles. Having n1 + ...+ nm = n particles, one
extremal situation is that all particles are distinguishable. In this case we have

ΦC(n1, ..., nm) = log
(
n1! · n2! · · ·nm!

)
=

m∑
i=1

logni! . (12)

Assuming a large number of particles, we can use Stirling’s formula and obtain

ΦC(n1, ..., nm) =

m∑
i=1

log
(ni

e

)ni

=

m∑
i=1

ni(logni − 1) .

Identifying the particle number with the concentration, we get

ΦC(u1, ..., um) =
m∑

i=1

FB(ui) =
m∑

i=1

ui(log ui − 1) ,

the Boltzmann statistics, describing the free energy of many distinguishable (i.e.,
classical) particles. Sometimes FB(ui) = ui log ui is used, neglecting a non-interesting
linear shift in the free energy density.

If we study quantum particles, some particles may be indistinguishable. This leads
to a function F (u) ≤ FB(u) for the statistics (the number of possibilities to arrange
the particles decreases). It is natural to have F (u) ≈ FB(u) for small u (few particles
are more distinguishable than many). A typical family of statistic functions is for
α ≥ 0

Fα(u) = uI−1
α (u) − Iα+1

(
I−1
α (u)

)
,

where

Iα(λ) =
1

Γ(α+ 1)

∫ ∞

0

ξα

1 + eξ−λ
dξ

is the Fermi-integral (or polylog-function). We have the main properties I ′α(λ) =
Iα−1(λ), Iα(λ) ≥ 0 for α ≥ −2. Iα is monotone for α ≥ −1 and convex for α ≥ 0.
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In the following table, we collect explicit representations and asymptotics for Fα(u)
and related functions.

function u−→ 0 u−→ ∞
Fα(u) = uI−1

α (u) − Iα+1

(
I−1
α (u)

)
u(log u− 1) Γ(α+ 1)

1
α+1 α+1

α+2
u

α+2
α+1

∂Fα(u) = I−1
α (u) log u Γ(α + 1)

1
α+1u

1
α+1

∂F−1
α (λ) = Iα(λ) ≥ 0 eλ λα+1

Γ(α+1)

∂2Fα(u) = 1
Iα−1(I

−1
α (u))

1
u

Γ(α + 1)
1

α+1 1
α+1

u−
α

α+1

[∂2Fα(u)]
−1

= Iα−1

(
I−1
α (u)

)
u (α+ 1)Γ(α + 1)

−1
α+1u

α
α+1

We have the special cases F∞(u) = FB(u) and F0(u) = 1
2
u2. FB(u) and related

functions behave for any u like Fα(u) for u−→ 0.

Other widely used statistic functions are the so-called Tsallis-entropies (see [23])

Fq(u) =
u− uq

1 − q
.

The main interesting functions can be calculated explicitly, but some important
properties for applications, like [∂2Fq(u)]

−1 ≈ u for u−→ 0 and ∂F−1
q (λ) ≥ 0, are not

fulfilled.

If we consider m species and looking for separated concentrations ui for every species,
we implicitly assume that particles from different species are distinguishable. This
means that the number of possibilities to distribute particles of different kind is the
product of one-particle numbers. Let Fi(ui) be the free energy of the i-th species,
then we get from (12)

ΦC(u1, ..., um) =

m∑
i=1

Fi(ui) . (13)

Therefore, a general free energy for many species like (3), which is not of type (13),
is difficult to understand as a function of separated concentrations ui.

3.3 One-species drift-diffusion problem

In this case, we simply assume that the state is the space coordinate z = x, and the
probability density function can be understood as a concentration u(x, t) = W (z, t).
In the case in which interaction and nonlinearities are absent, the equation for u
is an equation of type (1) with some operator A of type (2). Now the problem is
to derive an equation for u, knowing a stationary solution u∗ for the no-interaction
case (Au∗ = 0), some free energy of the form

Φ(u) =

∫
Ω

F

(
u(x, t)

u∗(x)

)
u∗(x)dx+

1

2

∫
Ω

(Ku)(x)u(x)dx (14)
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with a convex function F , a symmetric operator K, and a conservation law∫
Ω

u(x, t)dx =

∫
Ω

u∗(x)dx = 1 . (15)

We calculate the stationary state ū(x) by Lagrange’s method, varying the functional
Φ(u) under the constraint (mass conservation). We consider the Lagrangian

L(u) = Φ(u) − λ

(∫
Ω

u(x, t)dx− 1

)
.

The stationary state ū(x) is the solution to the Euler–Lagrange equation

δL(u)

δu
= ∂F

(
ū(x)

u∗(x)

)
+ (Ku)(x) − λ = 0 .

Now we introduce an interacting potential ψ as

(Ku)(x) = ψ(x) .

As an example, this potential can be understood as the electrostatic potential. In
this case, K is the solution operator of the Poisson equation including boundary
conditions. It follows

ū(x) = ∂F−1
(
λ− ψ(x)

)
u∗(x) ,

(Kū)(x) = ψ(x) .

In the case of no interacting K = O, ψ = 0, we get, from (15),

∂F−1(λ) = 1

and therefore λ = ∂F (1). It follows ū(x) = u∗(x), as expected.

We are now going to derive an evolution equation for the concentration u(x, t)
in such a way that the desired equation can be generalized to more complicated
situations such as nonlinear material laws and heterostructures. The driving force
for a diffusion equation is often assumed to be the gradient of the concentration ∇u.
In general, this is not suitable for the following reasons:

• It is well known from thermodynamics (see, e.g., [26]) that driving forces should
be gradients of some potentials. Potentials are intensive variables whereas the
concentration is an extensive variable.

• The driving force has to vanish in the equilibrium case, i.e., it has to be a
gradient of a function that is constant in the equilibrium. Therefore, the
gradient of the concentration is the correct driving force if and only if the
equilibrium concentration is constant. This is, of course, a very special case,
which is not fulfilled, for example, by heterostructures.
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• From an analytical point of view, the driving force has to be a smooth function.
Zero is such a smooth function, and we can study the problem with a smooth
driving force at least near the equilibrium. In heterostructures, it is typical
that the concentration is not smooth even in equilibrium.

The only intensive variable, which is surely constant in the equilibrium, is the La-
grange multiplier. Therefore, we assume that the Lagrange multiplier λ is the chem-
ical potential, depending on x and t, and

u(x, t) = ∂F−1(λ(x, t) − ψ(x, t))u∗(x) , (16)

(Ku)(x, t) = ψ(x, t)

is the state equation, connecting the potential and the concentration.

Let D be a linear operator with a kernel, containing the stationary potential, i.e.,
D� = 0. We assume that Dλ is the driving force of the diffusion vanishing in the
stationary state λ = const.

Now we postulate an evolution equation for u of the form

∂

∂t
u = −D∗ σ D λ , (17)

u = u∗∂F−1(λ− ψ) , (18)

Ku = ψ . (19)

with some suitable operator σ which is called the conductivity in the semiconductor
literature.

We know that in the simple case of one diffusing species the equations (1)–(2) and
(17) describe the same physical problem. As usual, D is taken as a gradient D = G∇
with a d×d matrix G(x) (implicitly, this means Maxwell distributed velocities with
constant temperature; see [20]).

So far, the operator σ is arbitrary. Taking D proportional to the gradient, we choose
σ in the form

σ = μu∗
[
∂2F (u/u∗)

]−1
(20)

with some suitable d×d matrix μ. This choice of σ is not common. Often (see, e.g.,
[17, 25, 5]), σ is taken proportional to u. This is right for Boltzmann statistics. If
we want to choose σ in such a way that equation (17) is of type (1)–(2) in the case
of no interaction, then (20) is the only possible way. Moreover, the many-species
case shows that the mobility is the product of some diagonal diffusion matrix and
the inverse Hessian. This is the Einstein relation. Microscopic considerations [12]
give further arguments for this choice.

Finally, we get the system

∂

∂t
u = ∇G∗μu∗

[
∂2F (u/u∗)

]−1
G∇λ , (21)

u = u∗∂F−1(λ− ψ) , (22)

Ku = ψ . (23)
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Theorem 3 The system (21)–(23) conserves mass and positivity, and has a time-
decreasing free energy Φ(t).

Proof: The conservation of mass follows for arbitrary positive semidefinite σ:

d

dt
〈�, u(t)〉 = 〈�, u̇(t)〉 = −〈�,D∗ σ D λ〉 = −〈D�,σ D λ〉 = 0 .

Moreover, for such σ, we have

d

dt
Φ
(
u(t)

)
=

〈
∂F

(
u(t)

u∗

)
, u̇(t)

〉
= −〈λ,D∗ σ D λ〉 = −〈σ D λ,D λ〉 ≤ 0 .

The positivity of the solution follows from the property of the Boltzmann or general
Fermi–Dirac statistics ∂F−1 ≥ 0.

Assuming no interaction K = O and inserting the state equation, we get

∂

∂t
u(x, t) = ∇G∗μu∗

[
∂2F (u/u∗)

]−1
G∇∂F

( u
u∗

)
. (24)

This is the right equation in the case that u∗ is not smooth like in the case of
heterostructures.

Assuming for a moment sufficient smoothness of u and u∗, we would get from equa-
tion (24)

∂

∂t
u(x, t) = ∇G∗μu∗

[
∂2F (u/u∗)

]−1
G ∂2F (u/u∗)∇ u

u∗
=

= ∇G∗μu∗G
(

1

u∗
∇u− u

u∗
1

u∗
∇u∗

)
=

= ∇G∗μG (∇u− u∇ log u∗) =

= ∇G∗μG (∇u+ u∇V ) , (25)

where we introduced a function V (x) describing a given external potential or a non-
homogeneity of the space. This is the Fokker–Planck equation, a special case of
(1)–(2) with Q = 0, B = G∗μG, and

ai(x) =
∑

j

∂

∂xj
bij(x) +

1

u∗(x)
∂

∂xj
u∗(x) .

The equilibrium concentration is the well-known Gibbs equilibrium u∗(x) = 1
Z
e−V (x)

for sufficiently fast growing potentials such that the statistical sum Z =
∫
e−V (x)dx

is well defined. Equation (25) is a typical drift-diffusion equation, considered for
instance in [17, 25, 5].

Let us remark that starting from a given free energy

Φ(u) =

∫
Ω

F (u(x)) dx+

∫
Ω

V (x)u(x)dx+
1

2

∫
Ω

(Ku)(x)u(x)dx, (26)
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we get equation (25) only in the Boltzmann case. Indeed, it is not clear why equation
(25) should describe the linear, non-interaction case only for Boltzmann statistics. A
free energy of type (10) generated by any convex function F is a Lyapunov function
for equation (25) (see, [19, 24, 2]). Thus, ansatz (14) seems to be better than (26).

Equation (24) can be generalized by allowing nonlinear matrices μ (depending on the
concentration u, the driving force ∇λ, or other quantities). The mass conservation
and the time decrease of the free energy is fulfilled as well, whereas, in general, the
positivity of the solution only follows for positive (∂F )−1.

If the material is anisotropic then μ can describe this anisotropy. As an example, μ
can be a diagonal matrix with unequal diagonal elements, describing the different
behaviour in various directions (see [16] for examples in semiconductor physics). The
matrix G describes the orientation of the material with respect to the coordinate
system. Thus, G is an orthogonal matrix, and G∗ is its inverse.

4 Many-species drift-diffusion problems

Now we consider the case of m interacting species. The main problem of the model-
ing of many-species drift-diffusion systems is the right structure of the free energy.
It is not obvious how to generalize the free energy (8)–(10) to the many-species
case. If the chemical part of the free energy is a sum of one-species free energies, it
is natural to set

ΦC(u) = ΦC(u1, ..., um) =

m∑
i=1

∫
Ω

Fi

(
ui(x)

u∗i (x)

)
u∗i (x)dx . (27)

This is the right form of the free energy (13), taking into account stationary solutions
u∗i . The only interaction of particles of different type is the self-consistent interaction
via a global field. We consider this case in the following subsection.

Cross interaction can also occur without self-consistent interaction. A possible way
to analyze this case is the following. We start with some free energy of type (27),
but presume that the particles are not independent of each other. Therefore, we
are interested only in some of them. Or, in other words, cross interaction can be
understood as the result of some pseudo-species. We will examine this idea in the
second subsection.

In general, the dependence of the free energy on the equilibrium concentrations u∗j
is so far unknown. A derivation from the microscopic free energy (4), using (5), is
possible only when making further assumptions such as Boltzmann statistics and
factorization of the m-particle probability density, and ultimately leads to (27).

Therefore, to formally sketch the derivation of an evolution system, we start with a
free energy modeling cross interaction

Φ(u) =

∫
Ω

F (u1(x), ..., um(x))dx+
1

2
〈u,Ku〉+ 〈u,K0f〉 , (28)
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with no further structure given, taking into account, however, a given external field,
generated by some given function f(x) via an operator K0.

To illustrate the structure of the terms in (28), we consider the case of electrostatic
interaction, assuming that the particles are charged (particle Xj with charge number
qj), and f(x) is a density of given and fixed charges. This is a typical situation in
semiconductor physics.

Let k(x, y) be Green’s function of Poisson’s equation including boundary conditions,
K1 the integral operator with kernel k(x, y), and ψ0(x) the solution of Poisson’s
equation

−∇(ε∇ψ0(x)
)

= f(x) +
m∑

i=1

qiui(x) .

Thus,

ψ0(x) =

∫
Ω

k(x, y)

(
f(y) +

m∑
i=1

qiui(y)

)
dy = K1(f +

m∑
i=1

qiui) .

We set

ψ(x) =

⎛
⎜⎝

q1
...
qm

⎞
⎟⎠ψ0(x) = (Ku)(x) + (K0f)(x) , (29)

with

(K0f)(x) =

∫
Ω

k(x, y)

⎛
⎜⎝

q1
...
qm

⎞
⎟⎠ f(y)dy =

⎛
⎜⎝

q1
...
qm

⎞
⎟⎠K1f ,

and

(Ku)(x) =

∫
Ω

k(x, y)

⎛
⎜⎝

q2
1 · · · q1qm
...

. . .
...

qmq1 · · · q2
m

⎞
⎟⎠
⎛
⎜⎝

u1(y)
...

um(y)

⎞
⎟⎠ dy = K0

m∑
i=1

qiui .

Considering cross interaction without reactions, we assume that the particles can
interact but cannot change their type. Thus, we assume conservation laws for each
species ∫

Ω

ui(x, t)dx =

∫
Ω

ui(x, 0)dx = 1, i = 1, ..., m . (30)

Varying the Lagrangian

L(u, λ) = Φ(u) −
m∑

i=1

λi

(∫
Ω

ui(x, t)dx− 1

)
,
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we get the Euler–Lagrange equation

λ = ∂F (u) + Ku+ K0f =

= ∂F (u) + ψ ,

where λ = (λ1, ..., λm) is a vector of Lagrange multipliers, and ψ = Ku+ K0f . The
stationary solution is the solution to the system

u∗ = (∂F )−1(λ− ψ) , (31)

K−1
1 ψ0 =

m∑
i=1

qiu
∗
i + f . (32)

This seems to be the right formulation because, in general, the operators K and
K0 are not given. In the case of electrostatic interaction, equation (32) is Poisson’s
equation, with a well-known operator K−1

1 , the same for all problems, whereas the
solution operators K and K0 depend on the domain and on the boundary condi-
tions. To calculate the stationary solution, we have to solve the system (31)–(32)
simultaneously (and to observe (30)).

As in the one-species case, we assume that in the non-equilibrium case the La-
grange multiplier λ = (λ1(x, t), ..., λm(x, t)) is a space-, time- and species-dependent
quantity—the chemical potential—and

u(x, t) = (∂F )−1
(
λ(x, t) − ψ(x, t)

)
(33)

is the state equation, where ψ(x, t) is defined by (29) and depends only on a scalar
function ψ0. In the case of electrostatic interaction, λ − ψ is called the vector of
chemical potentials.

Let Di be linear operators with a kernel, containing the stationary potential, i.e.,
Di� = 0. We assume that Diλi are the driving forces of the drift-diffusion vanishing
in the stationary state λi = const.

Now we postulate a system of evolution equations for u of the form

∂

∂t
uj(x, t) = D∗

jJj , j = 1, ..., m , (34)

where the flows Ji are connected with the driving forces by⎛
⎜⎝

J1
...
Jm

⎞
⎟⎠ = −

⎛
⎜⎝

σ11 · · · σ1m
...

. . .
...

σm1 · · · σmm

⎞
⎟⎠
⎛
⎜⎝

D1λ1(x, t)
...

Dmλm(x, t)

⎞
⎟⎠ , (35)

with some suitable operator σ = (σij). Taking into account Onsager’s principle, we
assume that the d× d matrices σij form a symmetric m×m matrix, i.e., σij = σji.

As in the one-species case, we have mass conservation

d

dt

∫
Ω

ui(x, t)dx = 〈�, u̇i〉 = 〈�,D∗
iJi〉 = 〈Di�, Ji〉 = 0 , i = 1, ..., m .
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To investigate the time dependence of the free energy (42), we calculate

d

dt
Φ
(
u(t)

)
=

m∑
i=1

∫
Ω

λi(x, t)(D
∗
iJi)(x, t)dx =

=

m∑
i=1

〈λi,D
∗
iJi〉 = −

m∑
i,j=1

〈λi,D
∗
iσijDjλj〉 = −

m∑
i,j=1

〈σijDjλj,Diλi〉 .

Thus, the free energy decreases if the dissipation rate

R(t) =

m∑
i,j=1

〈λi,D
∗
iσijDjλj〉 (36)

is nonnegative. This means for m arbitrary d-dimensional vectors yi

R =

m∑
i,j=1

〈σijyj, yi〉 =

m∑
i,j=1

d∑
α,β=1

σαβ
ij y

α
j y

β
i ≥ 0 .

For some special choices of the matrices σij , the positivity of the dissipation rate
can be shown. We consider three of them:

1) Let σij be positive semidefinite matrices, then

R(t) =

m∑
i,j=1

〈σijDjλj,Diλi〉 =

=
m∑

i=1

〈σiiDiλi,Diλi〉 +
m∑

i<j=1

〈
σij(Diλi + Djλj), (Diλi + Djλj)

〉
≥ 0 .

2) Let σ be a matrix of the type

σ =

⎛
⎜⎜⎝

a1+a12+...+a1m −a12 ... a1m

−a12 a2+a12+...+a2m ... −a2m
...

...
. . .

...
−a1m −a2m ... am+a1m+...+am,m−1

⎞
⎟⎟⎠ , (37)

where ai and aij are positive semidefinite d× d matrices. Then,

R(t) =
m∑

i,j=1

〈σijDjλj,Diλi〉 =

=

m∑
i=1

〈aiDiλi,Diλi〉 +

m∑
i,j=1

〈aijDiλi,Diλi〉 −
m∑

i,j=1

〈aijDiλi,Djλj〉 =

=
m∑

i=1

〈
aiDiλi,Diλi

〉
+

m∑
i<j=1

〈
aij(Diλi − Djλj), (Diλi −Djλj)

〉
≥ 0 .
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3) Let σαβ
ij = μαβHij , where H = (Hij) is a positive semidefinite m×m matrix, and

μ = (μαβ) is a d× d matrix with positive semidefinite entries. Then we have

R =

m∑
i,j=1

d∑
α,β=1

μαβHijy
α
j y

β
i =

d∑
α,β=1

μαβ

m∑
i,j=1

Hijy
α
j y

β
i =

d∑
α,β=1

μαβγαβ ≥ 0 .

As typical special case we choose Di = Gi∇. σ is an m×m matrix of d×d matrices.
The inverse Hessian is an m×m matrix. Thus, it is natural to set

σij = μij

[
∂2F (u)

]−1

ij
, μij = μji ,

where μij are suitable d× d matrices, and
[
∂2F (u)

]−1

ij
are scalars. This leads to the

system

∂

∂t
uj(x, t) = −∇G∗

jJj, j = 1, ..., m , (38)

with the flows

Jj = −
m∑

i=1

μji

[
∂2F (u)

]−1

ji
Gi∇λi . (39)

The matrix μ describes material laws and, therefore, we assume that μ is not de-
generated, i.e., μij ≥ ε > 0. To get more information about the structure of μ, we
assume sufficient smoothness and get from the state equation (33)

λi =
[
∂F (u)

]
i
+ qiψ0 =

∂F (u)

∂ui
+ qiψ0

and, therefore,

∇λi =

m∑
k=1

∂2F (u)

∂ui∂uk
∇uk + qi∇ψ0 .

Putting all together, we get (using that
[
∂2F (u)

]
ik

are scalars)

∂

∂t
uj(x, t) = ∇G∗

j

m∑
k=1

m∑
i=1

μji

[
∂2F (u)

]−1

ji

[
∂2F (u)

]
ik
Gi∇uk + (40)

+ ∇G∗
j

m∑
i=1

μji

[
∂2F (u)

]−1

ji
Gi∇ψi, j = 1, ..., m . (41)

We compare this expression for no interaction ψi = 0 and spatial isotropy Gi = I,
with the linear system (7). This shows that

m∑
i=1

μji

[
∂2F (u)

]−1

ji

[
∂2F (u)

]
ik

18



has to be a diagonal matrix. This is the case if μ and
[
∂2F (u)

]
ik

are diagonal
matrices (see the following subsection), or μji do not depend on j. Setting μj = μji,
we get

m∑
i=1

μj

[
∂2F (u)

]−1

ji

[
∂2F (u)

]
ik

= μjδjk .

From μji = μij follows that μ has to be a constant diagonal matrix with positive
entries μ. This leads to

σij = μ
[
∂2F (u)

]−1

ij
.

Since (41) is an unbounded operator, too, if
[
∂2F (u)

]−1

ji
is not diagonal, it has to

degenerate. for u−→ 0.

Finally, we get the following

Theorem 4 An evolution system, describing drift and diffusion of a vector u =
(u1, ..., um) of concentrations, according to a general free energy (28), has to have
the structure

∂

∂t
uj(x, t) = ∇G∗

jμ

m∑
i=1

[
∂2F (u)

]−1

ji
Gi∇λi, j = 1, ..., m ,

ψ = Ku+ K0f ,

u = (∂F )−1
(
λ− ψ

)
,

where the inverse Hessian has the asymptotic
[
∂2F (u)

]−1

ji
∼ ui for ui −→ 0, and μ is

a d× d matrix with positive entries.

Let us remark that in the case of charged particles, the global interaction can be
written as (32) with ui instead of u∗i .

The matrix μ can contain anisotropic effects. We have to remark that μ is the
same for each species. This means it is not possible to consider different anisotropic
effects for different species. Microscopic considerations like in [12] lead to the same
results. The diagonal matrix μ can contain different diagonal elements only if the
Hessian is diagonal. We consider this case in the following subsection.

4.1 Many diffusive non-interacting species

As a special case, let us assume that the free energy of m species is the sum of m
one-species free energies

Φ(u) =
m∑

i=1

∫
Ω

Fi

(
ui(x, t)

u∗i (x)

)
u∗i (x)dx+

1

2
〈u,Ku〉+ 〈u,K0f〉 , (42)
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with some reference concentrations u∗i (equilibrium concentrations) given. The Fi

are assumed to be convex functions. We have λi = ∂Fi(1) in the equilibrium and
non-interacting case.

Introducing the interaction potential ψ and similar to the one species case, we get
m state equations

ui(x, t) = ∂F−1
i

(
λi(x, t) + qiψ0(x, t)

)
u∗i (x) ⇐⇒

λi(x, t) = ∂Fi

(
u∗i (x)
ui(x, t)

)
− qiψ0(x, t), i = 1, ..., m ,

connecting the potential and the concentration.

The Hessian

∂2F (u) = diag

(
∂2F1

(
u1

u∗1

)
, ..., ∂2Fm

(
um

u∗m

))

is a diagonal matrix and so is its inverse. Setting Di = Gi∇ and

σ = diag

(
μ1u

∗
1

[
∂2F1

(
u1

u∗1

)]−1

, ..., μmu
∗
m

[
∂2Fm

(
um

u∗m

)]−1
)

, (43)

we get the following result.

Theorem 5 An evolution system, describing drift and diffusion of a vector u =
(u1, ..., um) of concentrations, according to a general free energy (42), has to have
the structure

∂

∂t
uj(x, t) = ∇G∗

jμju
∗
j

[
∂2Fj

(
uj

u∗j

)]−1

Gj∇λj , j = 1, ..., m ,

ψ = Ku+ K0f ,

u = (∂F )−1
(
λ− ψ

)
,

where μj are positive semidefinite d× d matrices.

Let us remark that, if no global self-consistent interaction is present, these are m
uncoupled equations.

4.2 Many non-interacting species and pseudo-species

We have assumed so far that the chemical part of the free energy ΦC(u) is a sum of
terms, each of which is the free energy of one kind of particle. This, of course, does
not describe cross interaction, i.e., interaction between particles of several types.
Such interaction can be a drift, forced by a self-consistent mean field, reactions,
and also diffusion cross effects. In this case, the free energy can be generated by a
general convex function of m variables. A special case of such effects is the situation
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in which one can understand the interaction as the result of some pseudo-species
that one has to take into consideration but which one does not want to model.

This is the case if the free energy contains no cross effects, but the species are not
independent of each other. Let us consider m + 1 species u = (u0, u1, ..., um) with
the free energy

ΦC(u) =
1

α0

∫
Ω

F0

(
u0(x, t)

u∗0(x)

)
u∗0(x)dx+

m∑
i=1

1

αi

∫
Ω

Fi

(
ui(x, t)

u∗i (x)

)
u∗i (x)dx ,

and the 0-th species is a function of the others u0 = H(u1, ..., um). We will consider
the case that this dependence is linear, i.e.

u0 = β − α0

m∑
i=1

1

αi

ui , (44)

with coefficients αi > 0 and β > 0. We can consider two different cases, depending
on the sign of α0.

For α0 > 0, we have, from (44),

β

α0
=

m∑
i=0

1

αi
ui .

This occurs for particles occupying β
α0

places and αi particles of kind ui occupying
one place. If we know the concentration of m species, the concentration of the
0-th species is given. Here, u0 can be the concentration of a real particle or the
concentration of vacancies. This is the typical situation one encounters in phase
separation problems (see, e.g., [14]).

For α0 < 0, we get, from (44),

u0 = β + |α0|
m∑

i=1

1

αi

ui .

The particles in this setting do not behave independently of each other, but the de-
pendence can be understood as the formation of some pseudo-particle. This pseudo-
particle has to be taken care of, but we are not interested in its evolution. A case in
point is the modeling of electron-hole scattering in semiconductor theory (see, e.g.,
[22]).

For simplicity, we only explore the case with Boltzmann statistics Fi(y) = F (y) =
y log y. The general case is similar, but we cannot describe it explicitly, and therefore,
the real structure of the object is not transparent. Moreover, the author is not aware
of papers dealing with cross interaction in the general case.

Thus, let us consider the free energy

ΦC(u) =

∫
Ω

F (u1, ..., um)dx =

=
1

α0

∫
Ω

u0(x, t) log
u0(x, t)

u∗0(x)
dx+

m∑
i=1

1

αi

∫
Ω

ui(x, t) log
ui(x, t)

u∗i (x)
dx (45)
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and the dependence (44). We have to investigate whether this function is convex,
and what is the structure of the evolution system.

The i-th component of the state equation ∂F (u) = λ reads (For simplicity, we
consider the no-interaction case. In general, λ has to be replaced by λ− ψ):

∂F

∂ui

=
1

αi

log
ui

u∗i
− 1

αi

log
u0

u∗0
= λi ,

or, using (44) and setting ki =
u∗

i

u∗
0
eαiλi ,

ui = kiu0 = kiβ − kiα0

m∑
i=1

1

αi
ui .

This is equivalent to the system (I is the identity matrix)⎡
⎢⎣I + α0

⎛
⎜⎝

k1
...
km

⎞
⎟⎠
(

1

α1
, ...,

1

αm

)⎤⎥⎦
⎛
⎜⎝

u1
...
um

⎞
⎟⎠ = β

⎛
⎜⎝

k1
...
km

⎞
⎟⎠ .

This is the state equation, connecting u with λ (via ki). This linear system has a
matrix that is the sum of the identity and a rank-1 matrix and therefore can be
easily solved. One gets

ui =
βu∗i e

αiλi

u∗0 + α0

m∑
i=1

1
αi
u∗i eαiλi

.

Theorem 6 The free energy density

F (u1, ..., um)dx =
1

α0
u0(x, t) log

u0(x, t)

u∗0(x)
+

m∑
i=1

1

αi
ui(x, t) log

ui(x, t)

u∗i (x)

with (44) is convex for any α0 �= 0.

Proof: For the Hessian we get

∂2F (u) =

⎛
⎜⎝

1
α1u1

· · · 0
...

. . .
...

0 · · · 1
αmum

⎞
⎟⎠+

α0

u0

⎛
⎜⎝

1
α1
...
1

αm

⎞
⎟⎠
(

1

α1
, ...,

1

αm

)
.
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Let x = (x1, ..., xm) ∈ R
m be arbitrary. We have

〈∂2F (u)x, x〉 =

m∑
i=1

x2
i

αiui
+
α0

u0

(
m∑

i=1

xi

αi

)2

=

=
1

u0

⎛
⎝u0

m∑
i=1

x2
i

αiui
+ α0

(
m∑

i=1

xi

αi

)2
⎞
⎠ = (46)

=
1

u0

(
β

m∑
i=1

x2
i

αiui
− α0

m∑
i,j=1

x2
i

αiαj

uj

ui
+ α0

m∑
i,j=1

xixj

αiαj

)
=

=
1

u0

(
β

m∑
i=1

x2
i

αiui

− α0

m∑
i<j=1

1

αiαj

(
xi

√
uj

ui

− xj

√
ui

uj

)2
)

. (47)

This bilinear form is positive for α0 > 0 because of (46) and for α0 < 0 because of
(47). Hence, F (u) is convex for any α0 �= 0.

Rewriting the evolution system, we have to calculate
[
∂2F (u)

]−1
. We have

det ∂2F (u) =
β

α1 · · ·αm

1

u0u1 · · ·um
≥ 0 .

Solving for fixed u the equation ∂2F (u)x = y, we get the inverse Hessian

[
∂2F (u)

]−1
=

⎛
⎜⎝

α1u1 · · · 0
...

. . .
...

0 · · · αmum

⎞
⎟⎠− α0

β

⎛
⎜⎝

u1
...
um

⎞
⎟⎠ (u1, ..., um) . (48)

Theorem 7 An evolution system, describing drift and diffusion of a vector u =
(u0, u1, ..., um) of concentrations, depending on each other via (44) and according to
a free energy with a chemical part (45), has to have the structure

∂

∂t
uj(x, t) = ∇G∗

jμαjujGj∇λj + ∇G∗
jμ
α0

β
uj

m∑
i=1

uiGi∇λi , j = 1, ..., m ,

ψ = Ku+ K0f ,

u = (∂F )−1
(
λ− ψ

)
,

where μ is a d× d matrix with positive entries.

Proof: The proof is obtained by putting the inverse Hessian (48) into the system
(38)–(39).

To illustrate this system, we consider two examples, setting for simplicity Gi = I.

Example 1): Setting αi = 1, β = 1, and μ = I, we have for m = 2 a system modeling
phase separation:

∂

∂t

(
u1

u2

)
= ∇

(
u1(1 − u1) −u1u2

−u1u2 u2(1 − u2)

)( ∇λ1

∇λ2

)
.
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This system is considered in [14].

Example 2): Setting α0 = −α1 · · ·αm, β = 1, and μ= 1
u0

I, we get for m = 2 a
system modeling electron-hole scattering:

∂

∂t

(
u1

u2

)
= ∇ 1

1 + α2u1 + α1u2

(
α1u1(1 + α2u1) α1u1α2u2

α1u1α2u2 α2u2(1 + α1u2)

)( ∇λ1

∇λ2

)
.

This system was derived in [18, 15, 22]. Our derivation shows that electron-hole
scattering can be understood as an independent diffusion of electrons, holes, and
some pseudo-particle. Analytical properties of this system were considered in [4].

5 Drift-diffusion systems with a temperature field

All material properties of drift–diffusion systems depend on temperature. Thus,
quantities such as conductivities depend on temperature in parameter-like way. All
processes that lead to drift or diffusion are connected to the transfer of energy and, in
turn, with local heat production and change of temperature. As usual, we assume
that the production of heat is small or dissipates out of the interesting domain
sufficiently fast. In many typical situations, however, this is not true. Moreover,
the transport of heat—especially in heterostructures—is so slow that whilst other
processes can be assumed already in an equilibrium, the heat transfer cannot. It
is therefore necessary to consider a spatial change of temperature—a temperature
field.

Temperature is an equilibrium value, so this point of view implicitly assumes that we
can regard small spatial regions as being in equilibrium to define the temperature.

This understanding of temperature contradicts the methods presented in the first
sections for the derivation of evolution equations for non-equilibrium situations. As
a consequence, it appears to be impossible to derive an energy model by varying a
global free energy functional. We therefore derive an evolution system in a purely
phenomenological way, assuming that temperature is a local parameter, and that
we can vary a suitable functional (this will be the entropy) in a local way. This
precludes the derivation of global drift terms, generated by a non-local operator K.
To still be able to study drift, we allow global drift terms only when the inverse
K−1

1 can be understood in a local way. This is the case, for instance, if K describes
electrostatic interaction with homogeneous Neumann boundary conditions.

A better derivation of models involving temperature has to consider the true state of
the (classical) particles—spatial coordinates and momentum or velocity. The change
in velocity can be a measure of the heat production, understanding heat as the loss
of kinetic energy—the velocity variation of a probability distribution in phase space.

The derivation of evolution equations for concentrations while taking into account
the probability distribution in phase space is a hard problem, in general. In [20],
this is done in a rigorous way for general Brownian motion. The results there show
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that even in simple cases the type of the resulting evolution equations can change
in time.

Although the derivation of the equations is a purely phenomenological one, the pre-
sented equations were successfully used in numerical applications [3]. Therefore, the
methods appear to be useful, regardless of the difficulties of their rigorous founda-
tion.

5.1 Thermodynamic properties and equilibrium state

We consider global self-consistent electrostatic interaction, assuming that the par-
ticles Xi are charged with charge qi. Let f be a given and fixed distribution of
charges, then the electrostatic interaction is described by Poisson’s equation

K−1ψ0 = −∇ · (ε∇ψ0) = f + q = f +
m∑

i=1

qiui ,

where ε is the dielectric permittivity. This equation can be understood locally.

Assuming the temperature to be a local equilibrium quantity, as mentioned we have
to consider global (capital letters) and local (small letters) quantities:

S(t) =

∫
Ω

s(x, t) dx (entropy),

E(t) =

∫
Ω

u0(x, t) dx (total energy),

Φ(t) =

∫
Ω

h(x, t) dx (free energy).

From thermodynamics we use the following local relations between entropy and
energies:

s = −h′ , (49)

u0 = h + Ts . (50)

Here and from now on, g′(T ) means the derivative of some function g(T ) with respect
to the temperature as a parameter. ∂i denotes the derivative with respect to ui as
a parameter.

The equations (49) and (50) are equilibrium relations, but we assume that they hold
in every point.

Let c(T ) be a suitable function describing the heat capacity (e.g., c(T ) = cLT (logT−
1), where cL is the heat capacity of a crystal lattice). We postulate the free energy
in the form

Φ(u, T ) = −
∫

Ω

c(T )dx+
m∑

i=1

∫
Ω

Fi(ui, T )dx+

+
1

2

∫
Ω

u(x)(Ku)(x)dx+

∫
Ω

u(x)(K0f)(x)dx

25



(here K and K0 are the same operators as in the previous section). This definition
uses extensive (concentrations) and intensive (temperature) values as independent
variables of the free energy. This seems to be inconsistent. For technical reasons,
we set Fi(ui, T ) = Tuifi(ui, T ) and assume that Fi(·, T ) is convex. Our definition
assumes that the temperature is not a thermodynamic value but a parameter (with
unknown nature) depending on x and t. For a more correct definition, a right
understanding of the temperature is necessary. For the same reason, Fi is not
assumed to be convex as a function of T .

We assume that Φ(u, T ) can be represented as an integral of some locally defined
function

Φ(u, T ) =

∫
Ω

h(u, T )dx ,

where we define

h(u, T ) = −c(T ) + T
m∑

i=1

uifi(ui, T ) +
ε

2

∣∣∇ψ0

∣∣2 .
Here, we used the local representation of K−1

1 from

1

2
〈Ku, u〉+ 〈K0f, u〉 =

1

2
〈K−1

1 ψ0, ψ0〉 .

Furthermore, we assume conservation of mass∫
Ω

ui(x, t)dx =

∫
Ω

ui(x, 0)dx = 1, i = 1, ..., m ,

and conservation of total energy

E(t) = E(0) .

Looking for the maximum of the entropy, we consider the Lagrangian

L(T, u) = S +
m∑

i=1

λi

(∫
Ω

ui(x)dx− 1

)
+ θ(E − E0) .

Dealing with local quantities, we assume that the variation of L(T, u) with respect
to some function is the partial derivative of the local function

l(T, u) = s+

m∑
i=1

λiui + θu0 .

For the interaction term we use the following local property, coming from Poisson’s
equation

∂

∂ui

ε

2

∣∣∇ψ0

∣∣2 =
∂

∂ui
ψ0

(
f +

m∑
i=1

qiui

)
= qiψ0 .
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To calculate s and u0 we use equations (49) and (50). For the entropy density, we
get

s = −h′ = c′(T ) −
m∑

i=1

ui

(
fi(ui, T ) + Tf ′

i(ui, T )
)

= c′(T ) −
m∑

i=1

uiPi .

Here, we defined the specific entropy per particle

Pi = fi(ui, T ) + Tf ′
i(ui, T ) . (51)

From equation (50), we get a representation for the total energy.

u0 = h+ Ts = c′(T )T − c(T ) − T 2
m∑

i=1

uif
′
i(ui, T ) +

ε

2

∣∣∇ψ0

∣∣2 .
Varying the Lagrange functional, we get the Euler–Lagrange equations for the equi-
librium quantities T ∗ and u∗i

δL

δT
=

∂

∂T
l = s′ + θh′ + θs+ θT ∗s′ = s′

(
1 + θT ∗

)
= 0 .

From this equation we get a condition for the equilibrium temperature T ∗

T ∗ = −1

θ
. (52)

As expected, the temperature has to be constant in the equilibrium.

For the concentrations we get, using (52),

δL

δui
=

∂

∂ui
l = λi − qi

ψ0

T ∗ − fi(u
∗
i , T

∗) − u∗i∂ifi(u
∗
i , T

∗) = 0 .

Hence,

λi − qi
ψ0

T ∗ = fi(u
∗
i , T

∗) + u∗i∂ifi(u
∗
i , T

∗) (53)

is the state equation. The connection between u∗i and λi is uniquely defined because
the right-hand side of this equation is the monotone function ∂Fi(·, T ∗).

5.2 Evolution equations and dissipation rate

We understand the Lagrange multipliers as thermodynamic potentials, being non-
constant in space, time, and for the species in the non-equilibrium case

θ−→ θ(x, t), λ1 −→ λ1(x, t), ..., λm −→ λm(x, t) .

For formal reasons we set

λ0(x, t) = θ(x, t) = − 1

T
. (54)
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Now we understand equation

λi − qi
ψ0

T
= fi(ui, T ) + ui∂ifi(ui, T ) (55)

as the state equation, connecting potentials and concentrations in the non-equilibrium
case, too.

Sometimes—especially in the semiconductor literature—electrochemical potentials
or quasi-Fermi levels ϕi are introduced. In our notation, the potentials

λi(x, t) =
ϕi(x, t)

T (x, t)

are the electrochemical potentials divided by the temperature. Using the inverse
function of the free energy, this leads to the well-known definition of the connection
between concentration and potential by the statistics

ui = ∂F−1
i

(
ϕi − qiψ0

T

)
.

Now we are going to postulate evolution equations for the wanted functions. As
usual, dealing with a temperature field, a heat equation is derived. It seems to be
more natural to consider an energy transport equation instead of a heat equation
because u0 is an extensive value like the concentrations, whereas T is an intensive
value. It it easy to derive a heat equation from an energy transport equation (see
[3]).

We postulate the evolution system in the form

u̇0 −∇ ·
(
ψ0ε∇ψ̇0

)
= D∗

0J0 ,

u̇1 = D∗
1J1 ,

...

u̇m = D∗
mJm .

This is the same system as in the constant-temperature case instead of the first
equation. The electrostatic term describes the evolution of the energy induced by
the electrostatic field. We define the flows setting⎛

⎜⎜⎜⎝
J0

J1
...
Jm

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

σ00 σ01 ... σ0m

σ10 σ11 ... σ1m
...

...
. . .

...
σm0 σm1 ... σmm

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

D0λ0

D1λ1
...

Dmλm

⎞
⎟⎟⎟⎠ .

Taking into account Onsager’s principle, we assume σij = σji. Thus, we have the
following representations for the flows

Ji = −
m∑

j=1

σijDjλj + σi0D0
1

T
, (56)

J0 = −
m∑

j=1

σ0jDjλj + σ00D0
1

T
. (57)
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To prove the second law of thermodynamics, we have to show that the entropy
increases in time. Let us assume that the evolution of the entropy is governed by
some equation

ṡ(t) = D∗
sJs , (58)

where Js is the entropy flow, and D∗ is some operator, which is so far unknown. We
have to show

d

dt
S(t) =

∫
Ω

ṡ(t)dx = 〈1,D∗
sJs〉 ≥ 0 . (59)

To calculate this quantity, we have to find a connection of the time derivative ṡ(t)
to the time derivatives in the evolution equations.

For this purpose we derive some formulae, useful in the future. Differentiating the
state equation with respect to the temperature, we obtain

∂

∂T

(
λi(x, t) − qi

ψ0

T

)
=

∂

∂T

(
fi(ui, T ) + ui∂ifi(ui, T )

)
,

qi
ψ0

T 2
= f ′

i(ui, T ) + ui∂if
′
i(ui, T ) .

Hence,

qiψ0u̇i = T 2u̇i(f
′
i(ui, T ) + ui∂if

′
i(ui, T )) . (60)

Differentiating by time, from Poisson’s equation follows

−∇ · (ε∇ψ̇0) =

m∑
i=1

qiu̇i ,

−
m∑

i=1

qiu̇iψ0 = ψ0

(
∇ · (ε∇ψ̇0)

)
. (61)
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Using the relations (60) and (61), we calculate the time derivative of the total energy:

u̇0 = ε∇ψ0 · ∇ψ̇0 + c′′(T )T Ṫ − 2T Ṫ
m∑

i=1

uif
′
i(ui, T ) − T 2

m∑
i=1

u̇if
′
i(ui, T ) −

− T 2

m∑
i=1

ui

(
f ′′

i (ui, T )Ṫ + ∂if
′
i(ui, T )u̇i

)
=

= ε∇ψ0 · ∇ψ̇0 + c′′(T )T Ṫ − ṪT

m∑
i=1

ui(2f
′
i(ui, T ) + Tf ′′

i (ui, T )) −

− T 2
m∑

i=1

u̇i

(
f ′

i(ui, T ) + ui∂if
′
i(ui, T )

)
=

(60)
= ε∇ψ0 · ∇ψ̇0 + c′′(T )T Ṫ −

− Ṫ T
m∑

i=1

ui(2f
′
i(ui, T ) + Tf ′′

i (ui, T )) −
m∑

i=1

qiu̇iψ0 =

(61)
= ε∇ψ0 · ∇ψ̇0 + c′′(T )T Ṫ −

− Ṫ T
m∑

i=1

ui(2f
′
i(ui, T ) + Tf ′′

i (ui, T )) + ψ0

(
∇ · (ε∇ψ̇0)

)
=

= ∇ ·
(
ψ0ε∇ψ̇0

)
+ cwṪ

with

cw = T
(
c′′(T ) −

m∑
i=1

ui(2f
′
i(ui, T ) + Tf ′′

i (ui, T ))
)
. (62)

Now, using the relations (60), (61), and (62), we can calculate the time derivative
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of the entropy and get

ṡ = c′′(T )Ṫ −
m∑

i=1

u̇i

(
fi(ui, T ) + Tf ′

i(ui, T )
)
−

−
m∑

i=1

ui

(
f ′

i(ui, T )Ṫ + ∂if
′
i(ui, T )u̇i + Ṫ f ′

i(ui, T ) + T Ṫ f ′′
i (ui, T ) +

+ T∂if
′
i(ui, T )u̇i

)
= Ṫ

(
c′′(T ) −

m∑
i=1

ui

(
2f ′

i(ui, T ) + Tf ′′
i (ui, T )

))
−

−
m∑

i=1

u̇i

(
fi(ui, T ) + ui∂ifi(ui, T ) + Tf ′

i(ui, T ) + Tui∂if
′
i(ui, T )

)
=

(62)
= cw(T )

Ṫ

T
−

m∑
i=1

u̇i

(
fi(ui, T ) + ui∂ifi(ui, T ) + Tf ′

i(ui, T ) + Tui∂if
′
i(ui, T )

)
=

(55)
= cw(T )

Ṫ

T
−

m∑
i=1

u̇i

(
−qiψ0

T
+ λi + Tf ′

i(ui, T ) + Tui∂if
′
i(ui, T )

)
=

(61)
= cw(T )

Ṫ

T
−

m∑
i=1

u̇i

(
−qiψ0

T
+ λi + qi

ψ0

T

)
= cw(T )

Ṫ

T
−

m∑
i=1

u̇iλi .

Thus, we obtain a connection between the time derivatives of ui, s, and ψ0:

ṡ =
1

T
u̇0 −

m∑
i=1

u̇iλi − 1

T
∇ ·

(
ψ0ε∇ψ̇0

)
. (63)

To prove the validity of the second law of thermodynamics (59), we use (63) and
the definition (54) of λ0 to obtain

d

dt
S(t) =

∫
Ω

1

T

(
u̇0 −∇ ·

(
ψ0ε∇ψ̇0

))
dx−

m∑
i=1

∫
Ω

u̇iλidx =

= 〈 1

T
,D∗

0J0〉 −
m∑

i=1

〈λi,D
∗
iJi〉 = −

m∑
i=0

〈λi,D
∗
iJi〉 = (64)

= −
m∑

i=0

〈Diλi, Ji〉 =

m∑
i,j=0

〈σijDjλj ,Diλi〉 .

To show that the dissipation rate

R(t) =
m∑

i,j=0

〈σijDjλj,Diλi〉 (65)

is nonnegative, we have to investigate the natural properties of the matrix (σij)
m
i,j=0.

In the case of constant temperature, the positivity of the dissipation rate is a con-
sequence of the positivity of the inverse Hessian. This follows from the convexity of
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the chemical part of the free energy. In the case with temperature field, we assumed
that T is a parameter in the material laws, and it is not clear whether F (u, T ) is
still a convex function. Thus, we can only use the connection of the matrix (σij)

m
i,j=1

with a positive defined inverse Hessian. Therefore, we have to use some further
assumptions for the matrices σ0j and σ00.

Such an assumption we obtain investigating the entropy flow. Comparing equation
(64) with (58), it is natural to understand

Js =
1

T
J0 +

m∑
i=1

λiJi (66)

as the entropy flow. On the other side, the entropy flow is the sum of entropy flows,
generated by particle and heat transport. Therefore, the entropy flow has to be

Js =

m∑
i=1

PiJi − κLTD0
1

T
, (67)

where κL is the heat conductivity of the material. The first term is the entropy flow,
induced by the particles, where Pi is the specific entropy per particle introduced
by (51). The last term is a generalization of the well-known temperature-induced
entropy flow −κL

∇T
T

. If we have no anisotropy, i.e. D0 = −∇, the quantities
coincide because of (∇T )/T = −T∇(1/T ).

Combining (66) and (67), and using the representations of the flows (56) and (57),
we get

0 =

m∑
i=1

(Pi − λi)Ji − 1

T
J0 − κLTD0

1

T
=

=

m∑
i=1

(Pi − λi)Ji − 1

T

(
m∑

j=1

σ0jDjλj − σ00D0
1

T

)
= −κLTD0

1

T
+

+
m∑

i=1

(Pi − λi)

(
m∑

j=1

σijDjλj − σi0D0
1

T

)
− 1

T

(
m∑

j=1

σ0jDjλj − σ00D0
1

T

)
=

=
m∑

j=1

(
m∑

i=1

σij(Pi − λi) − 1

T
σ0j

)
Djλj + (68)

+

(
σ00

1

T
−

m∑
i=1

(Pi − λi)σi0 − κLT

)
D0

1

T
. (69)

This has to be an identity, not depending on the values Djλj or D0
1
T
. Therefore,

the matrix elements are no longer arbitrary, we have, from (68) for σ0i,

σ0j = T
m∑

i=1

(Pi − λi)σij (70)
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and hence, from (69) for σ00,

σ00 = T
m∑

i=1

(Pi − λi)σi0 + κLT
2 = T 2

m∑
i,j=1

(Pi − λi)(Pj − λj)σij + κLT
2 . (71)

This is a transformation from the quantities σ00, σ01, ..., σ0m to other quantities
κL, P1, ...Pm. We will see that this transformation leads to a nonnegative dissipation
rate. Using these expressions, we get for the dissipation rate (65)

R(t) =

〈
κLTD0

1

T
, TD0

1

T

〉
+

+

m∑
i,j=1

〈
σij

[
T (Pi − λi)D0

1

T
−Diλi

]
,

[
T (Pj − λj)D0

1

T
− Djλj

]〉
.

This quantity is nonnegative if the matrices σij , i, j = 1, ..., m are positive semidef-
inite, and κL ≥ 0.

6 Conclusions

Here, we summarize some principles for the derivation of drift-diffusion systems.

• We start with a free energy, describing drift and diffusion of the particles. The
chemical part of this free energies should be of type ΦC(u) =

∑
i

∫
Fi(ui/u

∗
i )u

∗
i

with stationary state u∗i . Modeling cross diffusion, some of the particles can
be understood as pseudo-particles. It is not known how to write down the free
energy in the case of general cross interaction and non-constant stationary
states.

• The functions Fi have to be convex with the property ∂F−1
i ≥ 0.

• The stationary state u∗ can be calculated by Lagrange’s method, taking into
account the constraints and solving the Euler–Lagrange equation.

• The Lagrange multiplier λ has to be understood as a thermodynamic potential
and the Euler–Lagrange equation has to be understood as the state equation,
connecting the intensive thermodynamic potential and the extensive concen-
tration.

• The driving force is an operator with kernel � acting on the thermodynamic
potential. Then, the stationary solution of the evolution system is the solution
of the Euler–Lagrange equation.

• Microscopic considerations show that the operator connecting the driving
forces should be taken as the product of a diagonal matrix (diffusivity) and the
inverse Hessian of the free energy. Cross diffusion requires constant diagonal
diffusivities.
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• For energy models, it is not clear how to write down the free energy to use this
method in a rigorous way. The presented derivation is a purely phenomeno-
logical one and far from accuracy. Nevertheless, this method is very successful
in applications.
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