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Abstract

We consider sharp inequalities involving slowly increasing sequences and functions, i.e., func-

tions f(t) with f ′(t) ≤ 1 and sequences (ai) with ai+1 − ai ≤ 1. The inequalities are reverse

to mean inequalities, for example. In the continuous case, integrals of powers are estimated by

powers of integrals, whereas in the discrete case powers of sums are estimated by sums of powers

of sums. The problem is connected with interpolation theory in Banach spaces, one of them

W 1,∞.
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2 2 A SHARP DISCRETE VERSION

1 Introduction

For general nonnegative functions or sequences we know many classical inequalities estimating
lower powers by higher powers (see, e.g., [3]). If the functions or sequences are bounded, it is
well known that there can be derived reverse inequalities (see, e.g., [1, 4]).
This is also possible if the functions or sequences are slowly increasing. We consider inequalities,
involving continuous differentiable real valued functions f(t) defined on 0 ≤ t ≤ a with the
properties f(t) ≥ 0, f(0) = 0 and f ′(t) ≤ 1 (slowly increasing functions); and real valued
sequences (ai), i = 0, 1, 2, ..., n with the properties ai ≥ 0, a0 = 0 and ai+1 − ai ≤ 1 (slowly
increasing sequences). In the whole paper we do not consider the trivial case ai ≡ 0 or f(t) ≡ 0.
For example, such inequalities arise in interpolation theory in Banach spaces, where one of the
interpolating spaces is W 1,∞ (functions with bounded derivatives). In interpolation theory a
common problem is to estimate the norm of an interpolated space by the product of the two
norms of the interpolating spaces (see, e.g., [5])

‖ψ‖[X,Y ]θ ≤ c‖ψ‖1−θ
X ‖ψ‖θ

Y .

where θ ∈ [0, 1] is the interpolation parameter. An example is the following

Theorem 1 Let g(t), 0 ≤ t ≤ a be a continuous differentiable function with g(0) = 0 and
g(t) ≥ 0. Then, for k ≥ 1 the following inequality holds

k

∫ a

0

g2k−1(t)dt ≤

[

2 sup
t∈[0,a]

g′(t)

]k−1
(
∫ a

0

g(t)dt

)k

(1)

Proof. This Theorem is a special case of Theorem 3, that will be proved in section 3. �

Inequality (1) is similar (after taking the 1/(2k − 1)-th power of the inequality) to

‖g‖L2k−1
≤ C‖g‖

k−1

2k−1

W 1,∞ · ‖g‖
k

2k−1

L1
(2)

estimating the norm of a Lq-space (q = 2k−1) embedded in the interpolated space [L1,W
1,∞]θ

between L1[0, a] and W 1,∞[0, a] with θ = k
2k−1

.
In what follows, we consider functions f(t) with f ′(t) ≤ 1. The general case follows from
f(t) = 1

c
g(t) with c = supt∈[0,a] g

′(t). Inequality (1) for such functions reads

k

∫ a

0

f 2k−1(t)dt ≤ 2k−1

(
∫ a

0

f(t)dt

)k

. (3)

This inequality is sharp. Taking the linear function f(t) = t we get from (3) the identity

k
a2k

2k
= 2k−1

(

a2

2

)k

2 A sharp discrete version

Looking for a discrete version of inequality (3), one could expect

2k−1
(

∑n

i=1
ai

)k

≥ k
∑n

i=1
a2k−1

i (4)
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for non negative sequences a0 = 0, a1, a2, ..., an with ai − ai−1 ≤ 1, i = 1, ..., n This inequality is
true, though, it is not sharp unless k > 2. For k = 2 we get the inequality

(

∑n

i=1
ai

)2

≥
∑n

i=1
a3

i (5)

which leads for ai = i to the identity

(1 + 2 + 3 + ...+ n)2 = 13 + 23 + 33 + ... + n3

(well known as Nicomachus’s Theorem) showing the sharpness of (4) for k = 2.

Inequality (5) is contained in [2] as an exercise.

In general, a sharp inequality is given by the following

Theorem 2 Let a0 = 0, a1, a2, ..., an be a slowly increasing sequence of nonnegative real num-
bers, with ai − ai−1 ≤ 1, i = 1, ..., n and k ≥ 1 an integer. Then, the following inequality
holds

2k−1
(

∑n

i=1
ai

)k

≥
∑

26 |j≥1

(

k

j

)

∑n

i=0
a2k−j

i (6)

(the sum on the right hand side is taken over the first odd integers j while
(

k

j

)

is not 0). Equality
holds for ai = i or k = 1.

To make the sum more clear, we write down the inequality, for the first k:

20
(

∑n

i=0
ai

)1

≥ 1
∑n

i=0
a1

i

21
(

∑n

i=0
ai

)2

≥ 2
∑n

i=0
a3

i

22
(

∑n

i=0
ai

)3

≥ 3
∑n

i=0
a5

i +
∑n

i=0
a3

i

23
(

∑n

i=0
ai

)4

≥ 4
∑n

i=0
a7

i + 4
∑n

i=0
a5

i

24
(

∑n

i=0
ai

)5

≥ 5
∑n

i=0
a9

i + 10
∑n

i=0
a7

i +
∑n

i=0
a5

i

25
(

∑n

i=0
ai

)6

≥ 6
∑n

i=0
a11

i + 20
∑n

i=0
a9

i + 6
∑n

i=0
a7

i

Before proving Theorem 2 we define

ψk(x, y, z) =

(

z + x+ y

2

)k

−

(

z − x+ y

2

)k

−

(

z + x− y

2

)k

+

(

z − x− y

2

)k

for real x, y, z ≥ 0 and an integer k ≥ 0 and show the following

Lemma 1 For real x, y, z ≥ 0 and an integer k ≥ 0 we have ψk(x, y, z) ≥ 0. Equality holds
for k < 2, for odd k for xyz = 0 and for even k for xy = 0.
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Proof. Simple calculations show

2kψk(x, y, z) = (z + x+ y)k − (z + x− y)k + (z − x− y)k − (z − x+ y)k =

=
k
∑

i=0

(

k

i

)

(z + x)i
(

yk−i − (−y)k−i
)

+
k
∑

i=0

(

k

i

)

(z − x)i
(

(−y)k−i − yk−i
)

=

=
k
∑

i=0

(

k

i

)

(

yk−i − (−y)k−i
)(

(z + x)i − (z − x)i
)

=

=
k
∑

i=0

(

k

i

)

(

yk−i − (−y)k−i
)

i
∑

j=0

(

i

j

)

zj
(

xi−j − (−x)i−j
)

≥ 0

because xi ≥ (−x)i for positive x and i ≥ 0. The cases of equality are obvious. �

Remark 1 For even k the power function is convex and we have

z + x+ y

2
+
z − x− y

2
=
z − x+ y

2
+
z + x− y

2

thus, the Lemma is a consequence of Karamata’s inequality (see, e.g., [3]). For odd k this
argument fails, because z − x− y can be negative, and xk is not convex.

Proof. of Theorem 2: It is easy to verify

1

2

n
∑

i=1

[

(a2
i + ai)

k − (a2
i − ai)

k
]

=
∑

26 |j≥1

(

k

j

)

∑n

i=0
a2k−j

i

Thus, we define

ϕn = 2k−1
(

∑n

i=1
ai

)k

−
1

2

n
∑

i=1

[

(a2
i + ai)

k − (a2
i − ai)

k
]

and show ϕn ≥ 0. We set A1 = 0 and

An =
∑n−1

i=1
ai .

Then, we get

ϕ1 = 2k−1ak
1 −

1

2

[

(a2
1 + a1)

k − (a2
1 − a1)

k
]

=

=
1

2

[

(2a1)
k − (0a1)

k − (a2
1 + a1)

k + (a2
1 − a1)

k
]

=

=
1

2
ψk(2a1, a1 − a2

1, a
2
1 + a1)
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ϕn = 2k−1
(

∑n

i=1
ai

)k

−
1

2

n
∑

i=1

[

(a2
i + ai)

k − (a2
i − ai)

k
]

=

= 2k−1(An + an)k −
1

2

n−1
∑

i=1

[

(a2
i + ai)

k − (a2
i − ai)

k
]

−
1

2

[

(a2
n + an)k − (a2

n − an)k
]

=

= 2k−1Ak
n −

1

2

n−1
∑

i=1

[

(a2
i + ai)

k − (a2
i − ai)

k
]

+

=
1

2

[

(2An + 2an)k − (2An)k − (a2
n + an)k + (a2

n − an)k
]

=

= ϕn−1 +
1

2
ψk(2an, 2An + an − a2

n, 2An + an + a2
n)

It follows

ϕn =
1

2

n
∑

i=1

ψk(2ai, 2Ai + ai − a2
i , 2Ai + ai + a2

i )

To complete the proof, we use Lemma 1. For this purpose, we have to show that the arguments
of ψk are nonnegative. The only nontrivial case is 2Ai + ai − a2

i ≥ 0. We obtain

2Ai + ai − a2
i = 2

∑i−1

j=1
aj + ai − a2

i =

=
∑i−1

j=0
aj +

∑i

j=1
aj−1 + ai − a2

i =

=
∑i

j=1

(

aj + aj−1

)

−
∑i

j=1

(

a2
j − a2

j−1

)

=

=
∑i

j=1

(

aj + aj−1

)(

1 − aj + aj−1

)

≥ 0

Equality holds for ψk(2ai, 2Ai + ai − a2
i , 2Ai + ai + a2

i ) = 0 for all i = 1, ..., n. From the Lemma
follows that this is the case for 2Ai + ai − a2

i = 0. The last calculation shows that this happens
for aj − aj−1 = 1 for all j = 1, ..., n, i.e., aj = j.
Finally, we show equality for ai = i. Using

∑n

i=1 i = 1
2
n(n+ 1) we have to show

nk(n+ 1)k = 2
∑

26 |j≥1

(

k

j

)

∑n

i=0
i2k−j

From
k
∑

j=0

(

k

j

)

ij = (i+ 1)k we can conclude

2
∑

26 |j≥1

(

k

j

)

i2k−j =
[

i(i+ 1)
]k

−
[

i(i− 1)
]k

Now, the claim follows from induction over n, since

nk(n + 1)k +
(

[

(n + 1)(n+ 2)
]k

−
[

(n+ 1)n
]k
)

= (n+ 2)k(n+ 1)k

The induction basis is the well known formulae
∑

26 |j≥1

(

k

j

)

= 2k−1.

The case k = 1 is 20 (
∑n

i=0 ai)
1

= 1
∑n

i=0 a
1
i . �
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3 An estimate for integrals of powers of a function

Theorem 3 Let f(t), 0 ≤ t ≤ a be a continuous differentiable function with f(0) = 0, f(t) ≥ 0
and f ′(t) ≤ 1. Then, for real k ≥ 1 and real p > 0 such that fkp−1 and f p−1 are integrable, the
following inequality holds

k

∫ a

0

fkp−1(t)dt ≤ pk−1

(
∫ a

0

f p−1(t)dt

)k

(7)

For 0 < k ≤ 1 we get the opposite inequality. Equality holds for the linear function f(t) = t or
k = 1.

Proof. Let 0 ≤ t′ ≤ a and k ≥ 1. From f ′(t′) ≤ 1 and f ≥ 0 follows

f ′(t′)f p−1(t′) ≤ f p−1(t′).

After integration we get

∫ t

0

f ′(t′)f p−1(t′)dt′ =
1

p

∫ t

0

d

dt′
f p(t′)dt′ =

1

p
f p(t) ≤

∫ t

0

f p−1(t′)dt′

multiplying by p > 0 and taking the power to k − 1 it follows

f p(k−1)(t) ≤

(

p

∫ t

0

f p−1(t′)dt′
)k−1

(8)

multiplying by kf p−1(t) we obtain

kfkp−1(t) ≤ kpk−1f p−1(t)

(
∫ t

0

f p−1(t′)dt′
)k−1

and after integration

k

∫ a

0

fkp−1(t)dt ≤ pk−1

∫ a

0

kf p−1(t)

(
∫ t

0

f p−1(t′)dt′
)k−1

dt =

= pk−1

∫ a

0

(

d

dt

(
∫ t

0

f p−1(t′)dt′
)k
)

dt = pk−1

(
∫ a

0

f p−1(t)dt

)k

For 0 < k ≤ 1 we get – beginning with (8) – the opposite inequalities.
Equality for f(t) = t follows from the identity

k

∫ a

0

tkp−1dt =
k

kp
akp = pk−1

(

1

p
ap

)k

= pk−1

(
∫ a

0

tp−1dt

)k

The case k = 1 is obvious. �

Remark 2 Inequality (3) is the special case p = 2 of Theorem 3.
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4 An estimate by products of integrals

Theorem 4 Let f(t), 0 ≤ t ≤ a be a continuous differentiable function with f(0) = 0, f(t) ≥ 0
and f ′(t) ≤ 1. Define

F (p) = p

∫ a

0

f p−1(t)dt . (9)

Then, for real k1, k2 ≥ 1 and real p1, p2 > 0 such that f p1−1 and f p2−1 are integrable the
following inequality holds

F (k1p1 + k2p2) ≤ F k1(p1)F
k2(p2) (10)

Equality holds for the linear function f(t) = t or k1 = k2 = 1.

Proof. Analogously to the proof of Theorem 3, inequality (8) we obtain for k1, k2 ≥ 1 the
inequalities

f p1(k1−1)(t) ≤

(

p1

∫ t

0

f p1−1(t′)dt′
)k1−1

f p2k2(t) ≤

(

p2

∫ t

0

f p2−1(t′)dt′
)k2

f p2(k2−1)(t) ≤

(

p2

∫ t

0

f p2−1(t′)dt′
)k2−1

f p1k1(t) ≤

(

p1

∫ t

0

f p1−1(t′)dt′
)k1

Multiplying the first two and the last two inequalities, we get

f p1(k1−1)+p2k2(t) ≤ pk1−1
1 pk2

2

(
∫ t

0

f p1−1(t′)dt′
)k1−1(∫ t

0

f p2−1(t′)dt′
)k2

f p1k1+p2(k2−1)(t) ≤ pk2−1
2 pk1

1

(
∫ t

0

f p1−1(t′)dt′
)k1

(
∫ t

0

f p2−1(t′)dt′
)k2−1

Multiplying the first inequality by k1p1f
p1−1(t), the second by k2p2f

p2−1(t) and adding them,
yields for the left hand side

l.h.s. =
(

k1p1 + k2p2

)

f p1k1+p2k2−1(t)

because of p1(k1 − 1) + p2k2 + p1 = p1k1 + p2(k2 − 1) + p2 = p1k1 + p2k2 − 1 and for the right
hand side

r.h.s. = pk1

1 p
k2

2

(

k1f
p1−1(t)

(
∫ t

0

f p1−1(t′)dt′
)k1−1(∫ t

0

f p2−1(t′)dt′
)k2

+

= k2f
p2−1(t)

(
∫ t

0

f p1−1(t′)dt′
)k1

(
∫ t

0

f p2−1(t′)dt′
)k2−1

)

=

= pk1

1 p
k2

2

d

dt

[

(
∫ t

0

f p1−1(t′)dt′
)k1

(
∫ t

0

f p2−1(t′)dt′
)k2

]
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For integrable f pi−1 and ki ≥ 1, fk1p1+k2p2−1 is integrable, too. Now, the desired inequality
follows from integration.
The cases of equality are analogously to the proof of Theorem 3. �

Remark 3 For p1 = p2 =: p we get Theorem 3 with k := k1 + k2.

By induction it is easy to obtain the following

Theorem 5 Let f(t), 0 ≤ t ≤ a be a continuous differentiable function with f(0) = 0, f(t) ≥ 0
and f ′(t) ≤ 1. With definition (9) we have for real ki ≥ 1 and real pi > 0 such that all f pi−1

are integrable with i = 1, ..., m the following inequality

F

(

m
∑

i=1

kipi

)

≤

m
∏

i=1

F ki(pi) (11)

Equality holds for the linear function f(t) = t or ki = 1.

Remark 4 Remark 3 shows that an opposite inequality for 0 < k1, k2 ≤ 1 is not true in general,
because it may happens that 0 < k1, k2 ≤ 1 but k1 + k2 > 1.

Remark 5 The case ki ≥ 0,
∑m

i=1 ki = 1 would be the exponential version of Jensen’s inequal-
ity. Indeed, F (p) is log-concave, since

F 2(p)
(

logF (p)
)′′

= F ′′(p)F (p) − F ′2(p) =

=

(
∫ a

0

(

2 + p log f(t)
)

log f(t)f p−1(t)dt

)(
∫ a

0

pf p−1(t′)dt′
)

−

−

(
∫ a

0

(

1 + p log f(t)
)

f p−1(t)dt

)(
∫ a

0

(

1 + p log f(t′)
)

f p−1(t′)dt′
)

Hence, for ki ≥ 0,
∑m

i=1 ki = 1 we have

F

(

m
∑

i=1

kipi

)

≥

m
∏

i=1

F ki(pi)

5 A special case: power functions

For α ≥ 1, 0 ≤ t ≤ a the function

f(t) =
1

αaα−1
tα

satisfy f(0) = 0, f(t) ≥ 0 and

f ′(t) =

(

t

a

)α−1

≤ 1 .

f pi−1 and f
Pm

i=1
kipi−1 are integrable, if the conditions α(pi − 1) > −1 or, equivalently,

αpi − α + 1 > 0 ⇐⇒ pi >
α− 1

α
(12)
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hold. f
Pm

i=1
kipi−1 is automatically integrable since

α

(

m
∑

i=1

kipi − 1

)

+ 1 =

m
∑

i=1

(

αpi − α+ 1
)

+ α

m
∑

i=1

pi(ki − 1) + (m− 1)(α− 1) > 0

It follows

F (p) = p

∫ a

0

f p−1(t)dt = p

(

1

αaα−1

)p−1 ∫ a

0

tαp−αdt =
pap

αp−1(αp− α + 1)

and therefore
∑m

i=1 kipia
Pm

i=1
kipi

α
Pm

i=1
kipi−1 (α

∑m

i=1 kipi − α + 1)
≤

m
∏

i=1

(

pia
pi

αpi−1(αpi − α + 1)

)ki

.

From this follows (the powers of a cancel)

m
∏

i=1

(

αpi − α + 1

αpi

)ki

≤
α
∑m

i=1 kipi − α+ 1

α
∑m

i=1 kipi

(13)

with equality for α = 1 or ki = 1.
This inequality is true even for 0 < ki ≤ 1 with

∑

ki = 1. This follows from Jensen’s inequality:
The function

h(p) = log

(

αp− α + 1

αp

)

= log

(

1 −
α− 1

αp

)

is concave because of

h′′(p) = −
(α − 1)(2αp− α + 1)

p2(αp− α + 1)2
≤ 0 .

This is a consequence of the assumption αp− α + 1 > 0 since 2αp− α + 1 > αp− α + 1 > 0.
Thus, Jensen’s inequality reads

m
∑

i=1

kih(pi) ≤ h

(

m
∑

i=1

kipi

)

(14)

Taking the exponential function of this inequality shows (13).
If the sum of the ki is smaller then 1, (13) fails, in general. This can be seen, looking at (13)
for small ki. Then, the left hand side of (13) is around 1, whereas the right hand side becomes
negative.
If
∑m

i=1 ki = K > 1, (14) holds as well, even if some of the ki are less then 1. We have

Kh(p/K) ≤ h(p),
p

K
>
α− 1

α

as a consequence of the inequality log(1 − 1/x) ≥ K log(1 −K/x) for K > 1 and x ∈ (K,∞).
Then, from (14) follows (we can use it with ki := ki/K)

1

K

m
∑

i=1

kih(pi) ≤ h

(

1

K

m
∑

i=1

kipi

)

≤
1

K
h

(

m
∑

i=1

kipi

)

Thus, for such special functions, inequality (11) is a consequence of Jensen’s inequality, too.
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6 Some remarks on the general discrete case

Comparing inequality (3) with its discrete version (4), having equality for ai = i, one can expect
that the discrete version of

pk−1

(
∫ a

0

f p−1(t)dt

)k

≥ k

∫ a

0

fkp−1(t)dt

is

pk−1
(

∑n

i=1
ap−1

i

)k

≥
∑

j
αj

∑n

i=0
apk−j

i

with some suitable coefficients αj and equality for ai = i. For p = 3 this is

3k−1
(

∑n

i=1
a2

i

)k

≥
∑

j
αj

∑n

i=0
a3k−j

i

Setting sm =
∑n

i=0 i
m, simple calculations show for the first k = 1, 2, ..., 6

s2 = s2

21 · 31 · s2
2 = 2s3 + 2 · 21s5

22 · 32 · s3
2 = 3s4 + 21s6 + 3 · 22s8

23 · 33 · s4
2 = 4s5 + 60s7 + 120s9 + 4 · 23s11

24 · 34 · s5
2 = 5s6 + 130s8 + 11 · 51s10 + 13 · 40s12 + 5 · 24s14

25 · 35 · s6
2 = 6s7 + 240s9 + 42 · 43s11 + 6 · 14 · 43s13 + 16 · 120s15 + 6 · 25s17

For k = 2, this leads to the conjecture

3
(

∑n

i=1
a2

i

)2 ?
≥

∑n

i=0
a3

i + 2
∑n

i=0
a5

i

Setting ai = i/m for some m ≥ 1, we obtain

3
(

∑n

i=1
a2

i

)2

−
∑n

i=0
a3

i − 2
∑n

i=0
a5

i =
(m− 1)n2(1 + n)2

(

4n(1 + n) − (2 + 3m)
)

12m5

For a given m > 1 this is positive only for sufficiently large n. Or, reversely, The inequality
fails for to slowly increasing sequences.
Thus, it seems, there is no general discrete analogon of inequality (7) with equality for ai = i.
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