617 research outputs found

    Security oriented e-infrastructures supporting neurological research and clinical trials

    Get PDF
    The neurological and wider clinical domains stand to gain greatly from the vision of the grid in providing seamless yet secure access to distributed, heterogeneous computational resources and data sets. Whilst a wealth of clinical data exists within local, regional and national healthcare boundaries, access to and usage of these data sets demands that fine grained security is supported and subsequently enforced. This paper explores the security challenges of the e-health domain, focusing in particular on authorization. The context of these explorations is the MRC funded VOTES (Virtual Organisations for Trials and Epidemiological Studies) and the JISC funded GLASS (Glasgow early adoption of Shibboleth project) which are developing Grid infrastructures for clinical trials with case studies in the brain trauma domain

    Grid infrastructures for secure access to and use of bioinformatics data: experiences from the BRIDGES project

    Get PDF
    The BRIDGES project was funded by the UK Department of Trade and Industry (DTI) to address the needs of cardiovascular research scientists investigating the genetic causes of hypertension as part of the Wellcome Trust funded (ÂŁ4.34M) cardiovascular functional genomics (CFG) project. Security was at the heart of the BRIDGES project and an advanced data and compute grid infrastructure incorporating latest grid authorisation technologies was developed and delivered to the scientists. We outline these grid infrastructures and describe the perceived security requirements at the project start including data classifications and how these evolved throughout the lifetime of the project. The uptake and adoption of the project results are also presented along with the challenges that must be overcome to support the secure exchange of life science data sets. We also present how we will use the BRIDGES experiences in future projects at the National e-Science Centre

    Towards a virtual research environment for paediatric endocrinology across Europe

    Get PDF
    Paediatric endocrinology is a medical specialty dealing with variations of physical growth and sexual development in childhood. Genetic anomalies that can cause disorders of sexual development in children are rare. Given this, sharing and collaboration on the small number of cases that occur is needed by clinical experts in the field. The EU-funded EuroDSD project (www.eurodsd.eu) is one such collaboration involving clinical centres and clinical and genetic experts across Europe. Through the establishment of a virtual research environment (VRE) supporting sharing of data and a variety of clinical and bioinformatics analysis tools, EuroDSD aims to provide a research infrastructure for research into disorders of sex development. Security, ethics and information governance are at the heart of this infrastructure. This paper describes the infrastructure that is being built and the inherent challenges in security, availability and dependability that must be overcome for the enterprise to succeed

    Federated authentication and authorisation for e-science

    Get PDF
    The Grid and Web service community are defining a range of standards for a complete solution for security. The National e-Science Centre (NeSC) at the University of Glasgow is investigating how the various pre-integration components work together in a variety of e-Science projects. The EPSRC-funded nanoCMOS project aims to allow electronics designers and manufacturers to use e-Science technologies and expertise to solve problems of device variability and its impact on system design. To support the security requirements of nanoCMOS, two NeSC projects (VPMan and OMII-SP) are providing tools to allow easy configuration of security infrastructures, exploiting previous successful projects using Shibboleth and PERMIS. This paper presents the model in which these tools interoperate to provide secure and simple access to Grid resources for non-technical users

    Long wavelength structural anomalies in jammed systems

    Get PDF
    The structural properties of static, jammed packings of monodisperse spheres in the vicinity of the jamming transition are investigated using large-scale computer simulations. At small wavenumber kk, we argue that the anomalous behavior in the static structure factor, S(k)∌kS(k) \sim k, is consequential of an excess of low-frequency, collective excitations seen in the vibrational spectrum. This anomalous feature becomes more pronounced closest to the jamming transition, such that S(0)→0S(0) \to 0 at the transition point. We introduce an appropriate dispersion relation that accounts for these phenomena that leads us to relate these structural features to characteristic length scales associated with the low-frequency vibrational modes of these systems. When the particles are frictional, this anomalous behavior is suppressed providing yet more evidence that jamming transitions of frictional spheres lie at lower packing fractions that that for frictionless spheres. These results suggest that the mechanical properties of jammed and glassy media may therefore be inferred from measurements of both the static and dynamical structure factors.Comment: 8 pages, 6 figure captions. Completely revised version to appear in Phys. Rev.

    Mesoscopic theory for size- and charge- asymmetric ionic systems. I. Case of extreme asymmetry

    Full text link
    A mesoscopic theory for the primitive model of ionic systems is developed for arbitrary size, λ=σ+/σ−\lambda=\sigma_+/\sigma_-, and charge, Z=e+/∣e−∣Z=e_+/|e_-|, asymmetry. Our theory is an extension of the theory we developed earlier for the restricted primitive model. The case of extreme asymmetries λ→∞\lambda\to\infty and Z→∞Z \to\infty is studied in some detail in a mean-field approximation. The phase diagram and correlation functions are obtained in the asymptotic regime λ→∞\lambda\to\infty and Z→∞Z \to\infty, and for infinite dilution of the larger ions (volume fraction np∌1/Zn_p\sim 1/Z or less). We find a coexistence between a very dilute 'gas' phase and a crystalline phase in which the macroions form a bcc structure with the lattice constant ≈3.6σ+\approx 3.6\sigma_+. Such coexistence was observed experimentally in deionized aqueous solutions of highly charged colloidal particles

    Ordered Information Systems and Graph Granulation

    Get PDF
    The concept of an Information System, as used in Rough Set theory, is extended to the case of a partially ordered universe equipped with a set of order preserving attributes. These information systems give rise to partitions of the universe where the set of equivalence classes is partially ordered. Such ordered partitions correspond to relations on the universe which are reflexive and transitive. This correspondence allows the definition of approximation operators for an ordered information system by using the concepts of opening and closing from mathematical morphology. A special case of partial orders are graphs and hypergraphs and these provide motivation for the need to consider approximations on partial orders

    Exact factorization of correlation functions in 2-D critical percolation

    Full text link
    By use of conformal field theory, we discover several exact factorizations of higher-order density correlation functions in critical two-dimensional percolation. Our formulas are valid in the upper half-plane, or any conformally equivalent region. We find excellent agreement of our results with high-precision computer simulations. There are indications that our formulas hold more generally.Comment: 6 pages, 3 figures. Oral presentation given at STATPHYS 23. V2: Minor additions and corrections, figures improve

    The density functional theory of classical fluids revisited

    Full text link
    We reconsider the density functional theory of nonuniform classical fluids from the point of view of convex analysis. From the observation that the logarithm of the grand-partition function log⁡Ξ[ϕ]\log \Xi [\phi] is a convex functional of the external potential ϕ\phi it is shown that the Kohn-Sham free energy A[ρ]{\cal A}[\rho] is a convex functional of the density ρ\rho. log⁡Ξ[ϕ]\log \Xi [\phi] and A[ρ]{\cal A}[\rho] constitute a pair of Legendre transforms and each of these functionals can therefore be obtained as the solution of a variational principle. The convexity ensures the unicity of the solution in both cases. The variational principle which gives log⁡Ξ[ϕ]\log \Xi [\phi] as the maximum of a functional of ρ\rho is precisely that considered in the density functional theory while the dual principle, which gives A[ρ]{\cal A}[\rho] as the maximum of a functional of ϕ\phi seems to be a new result.Comment: 10 page

    Owner perceptions of their cat's quality of life when treated with a modified University of Wisconsin-Madison protocol for lymphoma

    Get PDF
    The objectives of this study were to assess owner perceptions of their cat’s quality of life during treatment for lymphoma with a doxorubicin-containing multi-agent chemotherapy protocol, whether various health-related parameters correlated with quality of life scores, and to assess owner satisfaction with the protocol
    • 

    corecore