31 research outputs found

    FABIAN-variant: predicting the effects of DNA variants on transcription factor binding.

    Get PDF
    While great advances in predicting the effects of coding variants have been made, the assessment of non-coding variants remains challenging. This is especially problematic for variants within promoter regions which can lead to over-expression of a gene or reduce or even abolish its expression. The binding of transcription factors to the DNA can be predicted using position weight matrices (PWMs). More recently, transcription factor flexible models (TFFMs) have been introduced and shown to be more accurate than PWMs. TFFMs are based on hidden Markov models and can account for complex positional dependencies. Our new web-based application FABIAN-variant uses 1224 TFFMs and 3790 PWMs to predict whether and to which degree DNA variants affect the binding of 1387 different human transcription factors. For each variant and transcription factor, the software combines the results of different models for a final prediction of the resulting binding-affinity change. The software is written in C++ for speed but variants can be entered through a web interface. Alternatively, a VCF file can be uploaded to assess variants identified by high-throughput sequencing. The search can be restricted to variants in the vicinity of candidate genes. FABIAN-variant is available freely at https://www.genecascade.org/fabian/

    AutozygosityMapper: Identification of disease-mutations in consanguineous families

    Get PDF
    With the shift from SNP arrays to high-throughput sequencing, most researchers studying diseases in consanguineous families do not rely on linkage analysis any longer, but simply search for deleterious variants which are homozygous in all patients. AutozygosityMapper allows the fast and convenient identification of disease mutations in patients from consanguineous pedigrees by focussing on homozygous segments shared by all patients. Users can upload multi-sample VCF files, including WGS data, without any pre-processing. Genome-wide runs of homozygosity and the underlying genotypes are presented in graphical interfaces. AutozygosityMapper extends the functions of its predecessor. HomozygosityMapper, to the search for autozygous regions, in which all patients share the same homozygous genotype. We provide export of VCF files containing only the variants found in homozygous regions, this usually reduces the number of variants by two orders of magnitude. These regions can also directly be analysed with our disease mutation identification tool MutationDistiller. The application comes with simple and intuitive graphical interfaces for data upload, analysis, and results. We kept the structure of HomozygosityMapper so that previous users will find it easy to switch. With AutozygosityMapper, we provide a fast web-based way to identify disease mutations in consanguineous families. AutozygosityMapper is freely available at https://www.genecascade. org/AutozygosityMapper/

    Aviator: a web service for monitoring the availability of web services

    Get PDF
    With Aviator, we present a web service and repository that facilitates surveillance of online tools. Aviator consists of a user-friendly website and two modules, a literature-mining based general and a manually curated module. The general module currently checks 9417 websites twice a day with respect to their availability and stores many features (frontend and backend response time, required RAM and size of the web page, security certificates, analytic tools and trackers embedded in the webpage and others) in a data warehouse. Aviator is also equipped with an analysis functionality, for example authors can check and evaluate the availability of their own tools or those of their peers. Likewise, users can check the availability of a certain tool they intend to use in research or teaching to avoid including unstable tools. The curated section of Aviator offers additional services. We provide API snippets for common programming languages (Perl, PHP, Python, JavaScript) as well as an OpenAPI documentation for embedding in the backend of own web services for an automatic test of their function. We query the respective APIs twice a day and send automated notifications in case of an unexpected result. Naturally, the same analysis functionality as for the literature-based module is available for the curated section. Aviator can freely be used at https://www.ccb.uni-saarland.de/aviator

    Deep phenotyping: symptom annotation made simple with SAMS.

    Get PDF
    Precision medicine needs precise phenotypes. The Human Phenotype Ontology (HPO) uses clinical signs instead of diagnoses and has become the standard annotation for patients\u27 phenotypes when describing single gene disorders. Use of the HPO beyond human genetics is however still limited. With SAMS (Symptom Annotation Made Simple), we want to bring sign-based phenotyping to routine clinical care, to hospital patients as well as to outpatients. Our web-based application provides access to three widely used annotation systems: HPO, OMIM, Orphanet. Whilst data can be stored in our database, phenotypes can also be imported and exported as Global Alliance for Genomics and Health (GA4GH) Phenopackets without using the database. The web interface can easily be integrated into local databases, e.g. clinical information systems. SAMS offers users to share their data with others, empowering patients to record their own signs and symptoms (or those of their children) and thus provide their doctors with additional information. We think that our approach will lead to better characterised patients which is not only helpful for finding disease mutations but also to better understand the pathophysiology of diseases and to recruit patients for studies and clinical trials. SAMS is freely available at https://www.genecascade.org/SAMS/

    MutationTaster2021

    Get PDF
    Here we present an update to MutationTaster, our DNA variant effect prediction tool. The new version uses a different prediction model and attains higher accuracy than its predecessor, especially for rare benign variants. In addition, we have integrated many sources of data that only became available after the last release (such as gnomAD and ExAC pLI scores) and changed the splice site prediction model. To more easily assess the relevance of detected known disease mutations to the clinical phenotype of the patient, MutationTaster now provides information on the diseases they cause. Further changes represent a major overhaul of the interfaces to increase user-friendliness whilst many changes under the hood have been designed to accelerate the processing of uploaded VCF files. We also offer an API for the rapid automated query of smaller numbers of variants from within other software. MutationTaster2021 integrates our disease mutation search engine, MutationDistiller, to prioritise variants from VCF files using the patient's clinical phenotype. The novel version is available at https://www.genecascade.org/MutationTaster2021/. This website is free and open to all users and there is no login requirement

    HBA-DEALS: accurate and simultaneous identification of differential expression and splicing using hierarchical Bayesian analysis.

    Get PDF
    We present Hierarchical Bayesian Analysis of Differential Expression and ALternative Splicing (HBA-DEALS), which simultaneously characterizes differential expression and splicing in cohorts. HBA-DEALS attains state of the art or better performance for both expression and splicing and allows genes to be characterized as having differential gene expression, differential alternative splicing, both, or neither. HBA-DEALS analysis of GTEx data demonstrated sets of genes that show predominant DGE or DAST across multiple tissue types. These sets have pervasive differences with respect to gene structure, function, membership in protein complexes, and promoter architecture

    Influence of Varying Fermentation Parameters of the Yeast Strain Cyberlindnera saturnus on the Concentrations of Selected Flavor Components in Non-Alcoholic Beer Focusing on (E)-b-Damascenone

    Get PDF
    The diversification of beer flavor is becoming increasingly popular, especially in the field of non-alcoholic beers, where sales are growing steadily. While flavor substances of traditional beers can largely be traced back to defined secondary metabolites, the production of non-alcoholic beers with non-Saccharomyces yeasts generates novel fruity flavors, some of which cannot yet be assigned to specific flavor substances. In a recently published study, besides pear, cool mint sweets, and banana-like flavor, distinctive red berry and apple flavors were perceived in a non-alcoholic beer fermented with the yeast strain Cyberlindnera saturnus TUM 247, whose secondary metabolites were to be elucidated in this study. The trials were carried out using response surface methodology to examine the fermentation properties of the yeast strain and to optimize the beer with maximum fruitiness but minimal off-flavors and ethanol content. It turned out that a low pitching rate, a moderate fermentation temperature, and an original gravity of 10.5 °P gave the optimal parameters. Qualitative analysis of the secondary metabolites, in addition to standard analysis for traditional beers, was first performed using headspace-gas chromatography with olfactometry. (E)-β-damascenone emerged as the decisive substance for the red berry and apple flavor and so this substance was then quantitated. Although (E)-β-damascenone is a well-known secondary metabolite in beer and this substance is associated with apple or cooked apple-and berry-like flavors, it has not yet been reported as a main flavor component in non-alcoholic beers.Fil: Methner, Yvonne. Universitat Technical Zu Munich; AlemaniaFil: Dancker, Philipp. Universitat Technical Zu Munich; AlemaniaFil: Maier, Robin. Universitat Technical Zu Munich; AlemaniaFil: Latorre, Mailén Angelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; ArgentinaFil: Hutzler, Mathias. Universitat Technical Zu Munich; AlemaniaFil: Zarnkow, Martin. Universitat Technical Zu Munich; AlemaniaFil: Steinhaus, Martin. Universitat Technical Zu Munich; AlemaniaFil: Libkind Frati, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; ArgentinaFil: Frank, Stephanie. Universitat Technical Zu Munich; AlemaniaFil: Jacob, Fritz. Universitat Technical Zu Munich; Alemani

    MutationTaster2021

    Get PDF
    Here we present an update to MutationTaster, our DNA variant effect prediction tool. The new version uses a different prediction model and attains higher accuracy than its predecessor, especially for rare benign variants. In addition, we have integrated many sources of data that only became available after the last release (such as gnomAD and ExAC pLI scores) and changed the splice site prediction model. To more easily assess the relevance of detected known disease mutations to the clinical phenotype of the patient, MutationTaster now provides information on the diseases they cause. Further changes represent a major overhaul of the interfaces to increase user-friendliness whilst many changes under the hood have been designed to accelerate the processing of uploaded VCF files. We also offer an API for the rapid automated query of smaller numbers of variants from within other software. MutationTaster2021 integrates our disease mutation search engine, MutationDistiller, to prioritise variants from VCF files using the patient's clinical phenotype. The novel version is available at https://www.genecascade.org/MutationTaster2021/. This website is free and open to all users and there is no login requirement

    GA4GH Phenopackets: A Practical Introduction.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases

    GA4GH Phenopackets: A Practical Introduction

    Full text link
    The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases
    corecore