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Abstract

We present Hierarchical Bayesian Analysis of Differential Expression and ALternative
Splicing (HBA-DEALS), which simultaneously characterizes differential expression and
splicing in cohorts. HBA-DEALS attains state of the art or better performance for both
expression and splicing and allows genes to be characterized as having differential
gene expression, differential alternative splicing, both, or neither. HBA-DEALS analysis
of GTEx data demonstrated sets of genes that show predominant DGE or DAST across
multiple tissue types. These sets have pervasive differences with respect to gene
structure, function, membership in protein complexes, and promoter architecture.

Keywords: Differential expression, Alternative splicing, Transcription

Background
RNA sequencing (RNA-seq) has become the most commonly used genomic technique
for the transcriptome-wide analysis of differential expression and alternative splicing of
mRNAs. Since its introduction over a decade ago, Illumina short-read sequencing tech-
nology has been the dominant platform for carrying out RNA-seq experiments, but newer
long-read single-molecule sequencing technologies of Pacific Biosciences and Oxford
Nanopore provide alternatives that may allow amore accurate and comprehensive assess-
ment of isoform diversity [1]. Analysis of RNA-seq data is done in a pipeline thatmaps raw
reads to genes or isoforms (transcripts), quantifies the number (count) of reads associated
with each isoform, generating an expression matrix, followed by normalization steps and
statistical analysis of differential expression [2, 3].
Algorithms for the analysis of differential gene expression or differential splicing have

many different approaches. Differential gene expression (DGE) refers to alterations in
the expression (counts) of the sum of each of the isoforms that are encoded by a gene.
Many methods for DGE analysis are based on discrete probability distributions such as
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the Poisson or negative binomial [4, 5]. voom instead estimates the mean-variance rela-
tion non-parametrically from log-counts per million reads, which are used as input for
linear modeling and empirical Bayes differential expression analysis [6].
In contrast to DGE, differential alternative splicing and transcription (DAST) refers

to differential usage of isoforms that include distinct combinations of exons or begin
from distinct transcription start sites. Computational methods for identifying DAST in
RNA-Seq data can be broadly divided into two approaches. The first approach is based
on an analysis of the percent spliced in (�[Psi]), which is defined as IR

IR+ER , where IR
refers to inclusion reads and ER to exclusion reads. This approach models differences
in splicing as differences in � , corresponding to the probability of an alternative splic-
ing event at a splice junction [7–10]. A second approach compares counts of alternative
isoforms [11–13].
Most existing methods look at either DGE or DAST but not both. When using separate

procedures for differential splicing and expression, however, the determination of which
genes are alternatively spliced, differentially expressed, undergo both of these changes, or
none of them requires intersection between negative and positive findings. This is usually
not possible without violating some of the assumptions of individual tests. For example,
frequentist methods assess statistically significant differential expression or splicing using
p values, but non-significant p values cannot be readily interpreted as providing evidence
of lack of differential expression or splicing. Moreover, variation of gene expression can be
affected by expression level [14], and similarly, variation of isoform expression is affected
by isoform level. Methods that transform isoform levels into proportions (i.e., �-based
methods) do not model this relationship correctly, and therefore fail to accurately model
dispersion, which is essential for determining significance. On the other hand, modeling
individual isoform expression levels but not modeling their joint expression can result in
false positives when a gene is differentially expressed but its isoforms are not differen-
tially spliced, since a change in an individual isoform’s levels between conditions does not
necessarily mean a change in that isoform’s proportion and vice versa.
In this work, in contrast, we present a Bayesian method for analyzing RNA-seq data

that simultaneously identifies DGE and DAST based on isoform counts. We show with
our method, using data from the Genotype-Tissue Expression (GTEx) project [15], that
genes can be assigned to four groups according to the propensity of a gene to display DGE,
DAST, both, or neither in comparisons between different tissue types. These classes differ
not only with respect to gene functions and structure, but also with respect to the dis-
tribution of transcription factor binding sites (TFBS), membership in protein complexes,
and methylation of their promoter regions.

Results
Here, we present a method for joint modeling of differential expression and splic-
ing, Hierarchical Bayesian Analysis of Differential Expression and ALternative Splicing
(HBA-DEALS).

A Bayesian model for simultaneous assessment of differential expression and splicing

HBA-DEALS is based on a hierarchical Bayesian model of the absolute expression levels
of the gene and its isoforms (Fig. 1 and Additional file 1:Fig. S1). HBA-DEALS assumes
that the data are available from n RNA-seq samples and that the sequence reads have
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Fig. 1 Overview of the HBA-DEALS model. The log-transformed expression of a gene with three isoforms
(green, orange, and blue) is shown. The gene expression is the sum of the expression of the isoforms.
Differential gene expression is modeled as two Normal distributions whose means differ by the parameter β .
The proportions of the corresponding isoforms have a Dirichlet prior, and the difference in proportions
between controls and cases is modeled by α (symbolized by the two triangles). An MCMC procedure is used
to solve for the posterior distribution of the parameters of the model for all genes and isoforms at once. The
marginal posterior distributions are in turn interpreted to classify each gene as DAST, DGE, both, or neither
(the “Methods” section). In this example, the gene shows both downregulation at gene level and a change in
the dominant isoform in sample B

been mapped to isoforms. The n samples are divided into two cohorts n1 and n2 (e.g.,
cases and controls). The output of any isoform quantification tool, including but not lim-
ited to Salmon [16], RSEM [17], Kallisto [18], and StringTie [19], can be used as the
input for HBA-DEALS. Long-read isoform counts can be generated with pipelines such
as SQANTI [20]. HBA-DEALS automatically sample-normalizes isoform counts.
The isoform counts are first log-transformed. The log gene expression levels are then

modeled using a Normal distribution, with a mean that is equal to the log-transformed
sum of correspondingmean isoform levels. A linearmodel is fit to each gene’s levels, and a
trend line is then fit to the square root standard deviations as a function ofmean gene level
[6]. The variance in an individual sample is inferred from the corresponding value of the
fitted trend line. The mean isoform expression is a fraction of the mean expression level
of its gene (in Fig. 1, sample A and sample B display a different distribution of the three
isoforms of an example gene), and similarly to gene expression, a sample-specific variance
is obtained from a mean-variance trend for isoforms. The proportions of all isoforms
assigned to a gene are represented as a vector of isoform fractions [ p1, p2, ..., pn] with
∑

pi = 1 (isoform fractions are symbolized by the triangles in Fig. 1). The prior of the
isoform fractions is Dirichlet distributed with the vector [ 1, 1, ..., 1].
In order to model difference in gene expression, a parameter β is added to the mean

expression level in one condition. A weakly informative N (0, 5) prior is assigned to β .
This prior represents our belief that the most common state of a gene is not differentially
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expressed, but large fold changes are not much less probable. Unlike differential expres-
sion, simple addition cannot model difference in splicing because the entries of the vector
of isoform fractions must sum to 1, and addition does not preserve this property. There-
fore, instead of adding a vector α to the isoform fractions in one condition, we apply an
Aitchison perturbation [21] between α and the isoform fractions in that condition. Note
that both α and β are parameters in a single hierarchical model, and therefore, HBA-
DEALS estimates the posterior distributions of α and β simultaneously. A β value of 0
corresponds to a gene that is not differentially expressed. If the bulk of its marginal poste-
rior distribution is entirely above or below zero, we interpret the gene to be differentially
expressed; otherwise, the interpretation is that the gene is not differentially expressed
(the “Methods” section). Similarly, an α vector in which all entries are equal corresponds
to a gene that is not differentially spliced. For a gene with T isoforms, this corresponds
to α =[ 1

T ,
1
T , ...,

1
T ]. We obtain the probability of differential splicing by examining the

shifted posterior marginal probability for each isoform i, Pαi(x − 1
T ). If the bulk of this

posterior distribution for some isoform is above or below zero, then we predict that the
gene is differentially spliced (the “Methods” section).
The performance of HBA-DEALS is not overly sensitive to the parameters used in its

weakly informative priors (Additional file 1: Fig. S2). In order to show that the MCMC
chain is convergent, we applied Geweke’s convergence diagnostic to the MCMC runs on
a complete simulated dataset using 5000 warmup steps and 5000MCMC steps [22]. After
multiple testing correction, none of the p values obtained using Geweke’s diagnostic were
significant (Additional file 1: Fig. S3).

Model validation

We applied three approaches to assess the performance of HBA-DEALS. First, we
extended an existing simulation scheme for RNA-seq expression data [6] to enable the
modeling of alternative splicing. For each gene, we split its sample proportion between a
random number of isoforms, and for differentially spliced genes, we doubled the propor-
tion of one random isoform in cases and another in controls. We analyzed 50 simulated
datasets for DGE with HBA-DEALS, voom [6], DESeq2 [5], edgeR [4], baySeq [23], and
NOISeq [24]. We analyzed the same datasets for differential alternative splicing with
HBA-DEALS, rMATS [8], and a method we call optimal splicing using the t-statistic
and proportions (OSTP), which provides an upper bound on the performance of t-
statistic-derived significance values to compare � of isoforms (the “Methods” section).
HBA-DEALS displayed a larger area under the precision-recall curve than the other
approaches did for both DGE and DAST (Fig. 2a, b).
In order to assess the accuracy of HBA-DEALS using real data, we ran HBA-DEALS on

estimated isoform levels from the Genotype-Tissue Expression project (GTEx) [15]. We
usedHBA-DEALS to identify differentially expressed and differentially spliced genes in 20
different pairs of tissues. We chose ten pairs of tissues that were closely related (e.g., sub-
cutaneous adipose tissue and visceral adipose tissue) and ten that were more distant (e.g.,
liver and pituitary gland). We formed multiple sub-cohorts for each tissue by choosing 15
samples at random and then compared the results of HBA-DEALS between different sub-
cohorts. Although the individual samples derive from unrelated individuals, there was a
high degree of overlap of genes identified as differentially expressed or spliced. We tested
the overlap between a total of 2791 pairs of cohorts (Additional file 1: Table S1). In each
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Fig. 2 HBA-DEALS evaluation. a Precision-recall (PR) analysis of HBA-DEALS and five state-of-the-art
algorithms for the detection of RNA-seq differential expression. b PR analysis of HBA-DEALS, OSTP, and
rMATS. In panels a and b, the Y axis shows precision and the X axis shows 1-recall. c R2 for gene expression
(GTEx, distant). Data points shown in color represent correlations based on genes that were identified as
differentially expressed by HBA-DEALS. As a control, genes not identified as differentially expressed with
probability p ≥ 0.25, see the “Methods” section) are shown in gray (abbreviations in Additional file 1:
Table S2). d R2 for isoform proportion (GTEx, distant). Data points shown in color represent correlations based
on isoforms identified as differentially spliced by HBA-DEALS. As a control, isoforms from genes not identified
as differentially spliced (p ≥ 0.25) are shown in gray

case, the overlap was highly significant (p < 2.23× 10−308 for all comparisons, hypergeo-
metric test). These results suggest that HBA-DEALS is able to identify characteristic and
reproducible differences in cohorts (Fig. 2c, d and Additional file 1: Figs. S4 and S5). The
correlation was higher in the distant tissues, likely because there were more pronounced
differences between samples. We also verified that the correlation increases with cohort
size (Additional file 1: Fig. S6).
A runtime analysis showed that HBA-DEALS required roughly 1.2 h on 64 cores to

perform 100,000 MCMC steps plus 10,000 warmup steps, which was roughly three times
the time required by rMATS to analyze splicing events. With the exception of baySeq,
which required 11 min, the other programs for the analysis of differential expression all
finished within 1 min (Additional file 1: Fig. S7). The length of the Markov chain required
for accurate estimation of the posterior and hence the total running time may be shorter
in practice depending on dataset properties.
Finally, for each tissue pair, we performed multidimensional scaling (MDS) of the vec-

tors of isoform proportions in all available samples, including only isoforms that were
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differentially spliced in at least 3 sub-cohorts (the “Methods” section). More specifically,
we first obtained genes that were predicted to be differentially spliced in at least 3 cohorts
of a given tissue pair, and that had isoforms that were classified as differentially spliced
with a fold change of at least 2. For each gene, we then computed the proportion of each
isoform that was predicted to be differentially spliced out of the total number of isoforms
of that gene. The Euclidean distance between the vectors of these proportions over all
differentially spliced genes of a tissue pair was then reduced into 2 dimensions using mul-
tidimensional scaling [25]. For example, MDS analysis of intersample distance based on
levels of isoforms that had been identified as differentially spliced in different cohorts
obtained a nearly perfect separation on samples from the left ventricle of the heart and the
atrial appendage. As a control, we repeated the MDS with differentially expressed genes
and isoforms that were assigned a probability of at least 0.25, and the two cohorts display
a substantially lower degree of separation (Additional file 1: Fig. S8b).

HBA-DEALS defines four categories of genes that differ with respect to splicing and

expression

Wenext askedwhether sets of genes can be identified byHBA-DEALSwhose regulation is
found to occur primarily by means of differential splicing, differential expression, or both.
We performed 20 comparisons between samples from different tissues (e.g., left ventricle
against atrial appendage). For each comparison, we compared cohorts of 15 samples for
each tissue (Additional file 1: Table S1) and used HBA-DEALS to call genes differentially
spliced, differentially expressed, both, or neither.
For the following analysis, a gene is considered differentially expressed in a tissue

if it was differentially expressed in at least 3 sub-cohorts, and differentially spliced if
it has an isoform that was differentially spliced in at least 3 sub-cohorts. If a gene is
found to be differentially spliced in at least twice as many comparisons as it is found
to be differentially expressed, we assign it to the DAST group. Conversely, if a gene
is differentially expressed in at least twice as many comparisons as it is differentially
spliced, we assign it to the DGE group. Genes that are both differentially spliced and
differentially expressed are assigned to the DAST/DGE group. Finally, genes that do
not display differential expression or splicing as defined above are assigned to the static
group (Fig. 3a).
We performed Gene Ontology [26] (GO) term enrichment analysis on the genes in each

of the four groups. The four groups differed with respect to significantly overrepresented
GO terms (Fig. 3b, with details in Supplemental Tables S3-S8). We classified GO terms
as having strong enrichment if they displayed statistically significant overrepresentation,
had at least 20 annotated genes, and showed an at least two-fold higher percentage of
annotated genes than the entire population of genes (the “Methods” section). Six enrich-
ments were found for the DAST group, and all of the terms were related to RNA biology.
No strong enrichments were found for the other three groups. For instance, while only
10.1% of all 13,688 genes were annotated to rna binding, over twice as many genes
in the DAST set were (21.5%). RNA binding proteins are involved in each step of RNA
metabolism including alternative splicing [27]. Changes in alternative splicing are com-
mon in biological processes and disease states, and an investigation of the functions
of alternatively spliced genes may tell us something about the biology of those states.
For example, subsets of alternatively spliced genes found in aging, with mutations in
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Fig. 3 a Distribution of protein coding genes in the groups DAST (n = 1789), DGE (n = 3355), DAST/DGE
(n = 7102), and static (n = 2018). Only those genes were included in the analysis for which at least two
isoforms were expressed at sufficient depth in most tissues. b Gene Ontology analysis revealed six GO
significantly enriched GO terms that show an at least 2-fold enrichment in one of the four groups (the
“Methods” section and Supplemental Tables S3-S8)

the spliceosome gene U2AF1 in myelodysplastic syndrome and with differentiation of
erythroblasts, are enriched for genes involved in RNA processing [28–30].
None of the significant GO terms for the DGE group was associated with a two-fold

increase in the percentage of annotated genes. The specificity of the significant GO
terms identified for the DAST and DGE groups was significantly higher than that for the
remaining two groups (Additional file 1: Fig. S9). This suggested that the DAST and DGE
groups show a greater degree of functional uniformity than the other two groups, which
motivated us to further investigate differences between these two groups.

Pervasive differences in the genomic characteristics of DAST and DGE genes

We compared the DAST and DGE groups with respect to a variety of genomic properties.
DAST genes show a lower percentage of promoter methylation than DGE genes. DAST
genes also have a higher number of exons, are shorter, and have a lower mean exon length.
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DGE genes are more likely to have a TATA-box element in their promoter and are cor-
respondingly less likely to be associated with a CpG island. DAST and DGE genes differ
with respect to the frequency of a number of predicted transcription factor binding sites
(Table 1).
DNA methylation of the promoter region or of the gene body can influence alter-

native splicing [31–33]. We compared the methylation levels in gene body and pro-
moter of DAST and DGE genes, in 12 different age groups (the “Methods” section).
In all the age groups, the percentage of methylation was significantly higher in
expression-regulated genes. We found that the degree of promoter and gene body
methylation is also correlated with the exon count of genes. The proportion of
DAST genes increases with the exon count, but for any particular exon count, lower
degrees of promoter methylation are associated with higher proportions of DAST
genes (Fig. 4a). For gene body methylation, the proportion of DAST genes is high-
est with intermediate levels of methylation and lowest with the lowest levels of
methylation (Fig. 4b).
Limited evidence exists coupling binding of transcription factors to promoters with

alternative splicing [34, 35]. We explored whether profiles of TF binding motifs in gene
promoters are predictive of a gene being in the DAST or DGE group by means of logistic
regression with a total of 401 predictors consisting of the predicted target genes of 401
TFs. The value of each predictor is 1 (TFBS present) or 0 (no TFBS). The dependent vari-
able is the group (DAST vs. DGE). The weighted sum of the predictors and the intercept
models the logit of the probability of belonging to the expression-regulated gene class.
The model identified 41 TFs with statistically significant regression coefficients, compris-
ing 24 TFs in the DAST group and 17 TFs in the DGE group (Fig. 4c and Additional file 1:
Table S10).

Networks of splicing-regulated transcription factors

We then investigated potential synergy between TFs of the DAST and DGE groups. For
each group and for each pair of TFs, we computed the number of targets bound by both
TFs divided by the number of targets bound by at least one of them, where targets are

Table 1 Genes regulated predominantly by alternative splicing (AS genes) differ from genes
regulated predominantly by differential expression (DE genes) with respect to a number of
characteristics related to DNA sequence, methylation, and transcription factor binding. Entries
shown as percentages indicate the percentage of all genes in the group that display the
characteristic.MW Mann-Whitney test, FET Fisher exact test,W Wald test. Additional methylation
results are listed in Supplementary Table S9

Predictor DAST genes DGE genes p value

Promoter methylation age 0 34.66 25.09 1.69 × 10−23 (MW)

ZFX binding 57.5% 35.8% 1.83 × 10−8 (W)

Number of exons 34 21 4.22 × 10−106 (MW)

Total gene length 72,367 bp 76,408 bp 5.81 × 10−6 (MW)

Dispersion 27.32 27.92 6.62 × 10−3 (MW)

CpG island 77% 61.3% 1.52 × 10−26 (FET)

TATA box 5.5% 12.9% 2.32 × 10−15 (FET)

Number of transcripts 11.4 6.9 4.94 × 10−152 (MW)

Exon length 240 bp 250 bp 4.35 × 10−28 (MW)
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Fig. 4 aMethylation × number of exons × proportion of splicing genes—promoter. bMethylation ×
number of exons × proportion of splicing genes—gene body. c Bar plot of the 41 TFs with significant
regression coefficients in the logistic regresssion. Positive coefficients predict DAST, and negative coefficients
predict DGE. dMultidimensional scaling of TF interaction profiles of DAST (blue) and DGE (green) genes

defined as all genes in either the DAST or the DGE groups. We noted that some TFs had
very few or very many binding targets. In order to remove trivial low and high scores, we
therefore selected TFs from the 0.2 to the 0.8 quantiles with respect to the total number of
targets in both sets of genes. We then performed multidimensional scaling on the vectors
of interaction scores of the different TFs, i.e., each point in the MDS corresponds to the
interaction profile of a specific TF with other TFs when the targets are either the DAST or
DGE set (Fig. 4d). Remarkably, we obtained perfect linear separation between interaction
profiles for the two types of genes. This result suggests that combinatorial regulation plays
a role in determining both changes in splicing and gene expression.
In order to examine whether particular protein complexes are enriched for DAST, we

downloaded the full set of gene complexes from the CORUM database [36] and com-
puted the probability of obtaining the observed proportion of DAST genes or a higher
proportion under the binomial null distribution, setting the probability of a DAST gene
to the mean proportion of DAST genes over all complexes (0.55). After Benjamini-
Hochberg multiple testing correction, DAST but not DGE were significantly enriched in
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spliceosome-related complexes. Two complexes enriched for DAST genes were related to
the ribosome (Table 2). Interestingly, networks of autoregulated alternative pre-mRNA
splicing have been demonstrated for components of the spliceosome as well as for subsets
of ribosomal proteins [37–39].
Combinatorial interactions among TFs and TF subnetworks are critical for tissue-

specific gene expression [40]. We therefore asked to what extent transcription factors
represented in the DAST and DGE groups differ. We computed the count of DAST-TFs
with TF binding motifs in promoters of all DAST genes and the corresponding count with
motifs in promoters or DGE genes. There was a significantly higher count for DAST genes
as compared to DGE genes (16.05 vs. 13.67 binding TFs, p = 7.36×10−53, Mann-Whitney
test). This finding supports the possible existence of independent cellular circuits that are
based primarily on changes in alternative splicing (Additional file 1: Fig. S10).

Discussion
Although short- and long-read RNA sequencing has become a standard method for
characterizing both gene expression and alternative splicing, the interplay between gene
expression and alternative splicing has not been extensively studied. Themajority of exist-
ing methods interrogate either gene expression or alternative splicing but not both, and
methods for jointly modeling expression and splicing have been lacking. In this work, we
have presented HBA-DEALS, a Bayesian method that analyzes both splicing and expres-
sion in a single model. Using simulated data, we have shown that the performance of
HBA-DEALS in the identification of differential gene expression and differential alter-
native splicing is superior to that of state-of-the-art approaches. By investigating data of
the GTEx project, we additionally showed that the predictions of HBA-DEALS are repro-
ducible across independent biological cohorts. The algorithmic approach HBA-DEALS is
a paradigm that can be used to identify groups of genes that display DAST, DGE, both,
or neither. This type of analysis has not been readily available with existing methods that
investigate DGE or DAST separately. We have demonstrated the utility of our method
by investigating patterns of differential expression and splicing in different tissue types
available in the GTEx resource. While both expression and splicing are controlled by a
broad range of interacting regulatory signals [41–43], subsets of genes can be identified
whose regulation occurs predominantly through alternative splicing (DAST) or through
differential gene expression (DGE). To demonstrate a typical application of our algorithm,
we characterized a set of genes that are preferentially alternatively spliced over a large
number of comparisons of different tissues using data from the GTEx project. We char-
acterized a set of genes that are preferentially alternatively spliced across comparisons

Table 2 Enrichment of DAST genes in protein complexes was calculated using the binomial
distribution (the “Methods” section). The Benjamini-Hochberg-corrected p value is shown

Complex name DAST genes DGE genes p value

Spliceosome 49 6 1.79 × 10−6

Nop56p-associated pre-rRNA complex 30 2 5.23 × 10−5

Ribosome, cytoplasmic 25 1 1.13 × 10−4

C complex spliceosome 32 4 4.08 × 10−4

60S ribosomal subunit, cytoplasmic 16 0 1.87 × 10−3

Parvulin-associated pre-rRNP complex 17 2 0.040
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of 20 tissue types. The DAST set was enriched in functions related to RNA metabolism,
for members of spliceosomal and ribosomal protein complexes, and showed pervasive
differences compared to the DGE set with respect to gene structure (gene length, aver-
age exon length, total exon count), DNA methylation of both promoter and gene body
sequences, and the distribution of transcription factor binding sites. We have further
found that combinatorial regulation of genes by transcription factors is fundamentally
different in splicing-regulated and expression-regulated genes, which suggests that both
processes are under the control of different gene regulatory networks. It seems plausible
that each process can act independently under certain conditions or given a specific set of
triggers. In support of this hypothesis, we found that transcription factors that are them-
selves in the DAST group favor targets that are in the DAST group. Moreover, DAST
genes are enriched for RNA binding, suggesting possible post-transcriptional regulatory
interactions.

Conclusions
HBA-DEALS presents a novel paradigm for analyzing high-throughput transcriptional
data. In contrast to previous approaches, the model used by HBA-DEALS includes both
changes in gene expression levels and isoform proportions, thereby unifying aspects of
transcriptional regulation that have thus far been analyzed separately. This level of anal-
ysis is paramount for understanding how the different levels of transcriptional regulation
interact. Differential expression and alternative splicing have both been the focus of
numerous studies that make use of high-throughput technologies. The unified approach
to transcriptional modeling that we presented here is expected to improve the insights
obtained from such studies by revealing the regulatory pathways that are triggered under
different conditions or biological states.

Methods
HBA-DEALS: Hierarchical Bayesian Analysis of Differential Expression and ALternative

Splicing

Hierarchical Bayesian modeling (HBM) is a multiparameter modeling technique in which
one assumes a statistical distribution for individual parameters whose interdependencies
are reflected in the structure of the hierarchy. In HBA-DEALS, this hierarchy models
isoform levels as fractions of the total number of mRNA molecules produced from a cer-
tain gene. Our assumptions in developing our model were as follows: (i) An increase or
decrease in gene expression induces an increase or decrease in the level of at least one
isoform; (ii) Isoform levels are fractions of the gene expression level; and (iii) Changes in
isoform fractions do not necessitate changes in expression levels and vice versa. AMarkov
Chain Monte-Carlo (MCMC) technique can be used to estimate the posterior probability
of the parameters of an HBM. To do so, one must design the structure of the HBM and
define the probability distribution of each node.
The input for HBA-DEALS consists of a matrix of isoform counts derived from two

different conditions, here referred to as case and control, using any short- or long-read
next-generation sequencing technology. In the case of short-read RNA-seq, tools such as
RSEM [17] or StringTie [19] can be used to calculate isoform counts. Long-read isoform
counts can be generated with pipelines such as SQANTI [20]. HBA-DEALS calculates
gene expression levels by summing up the isoform counts of individual genes.



Karlebach et al. Genome Biology          (2020) 21:171 Page 12 of 20

The data is log-transformed using log2(x + 0.5), where x is the count-per-million
reads (log-cpm). Expression levels are modeled as Normal, with mean that is the log-
transformed sum of the corresponding isoform levels, and sample-specific variance, σ̂ 2

i
that is obtained from a mean-variance trend by fitting a linear model to each gene’s levels,
and then fitting a trend line to the square root standard deviations as a function of mean
gene level [6].

Assessment of DGE

HBA-DEALS models gene expression as follows. The difference between cases and
controls (β) is modeled with a weakly informative Normal prior.

β ∼ Normal(β|0, 5) (1)

The mean log-cpm level in controls (β0) is modeled with a Normal distribution such
that the mean of its prior is equal to the log-transformed mean expression value of the
control samples (μ1) and the variance is equal to 5. This constitutes a weakly informative
prior since it expresses our belief that the value of β0 will most likely be close to the
observed mean, but allows for large deviations:

β0 ∼ Normal(β0|μ1, 5) (2)

In order to model differences between cases and controls, we model the expression in
control i (yi) as:

yi ∼ Normal(yi|β0, σ̂ 2
i ) (3)

For case j, the mean is defined as β0 + β :

yj ∼ Normal(yj|β0 + β , σ̂ 2
j ) (4)

where σ̂ 2
i , σ̂ 2

j are obtained from the mean-variance trend.

Assessment of DAST

Log-transformed isoform levels are also modeled as Normal, with variance that is
obtained from a mean-variance trend, similarly to expression levels. The mean of isoform
i corresponds to a fraction pi of the mean expression level, with

∑
pi = 1.

The control fractions have a Dirichlet(1) prior, and the case fractions relate to the con-
trol fractions (pi and p′

i refer to the proportion of isoform i in controls and cases) via the
following formula (the Aitchison perturbation [21]):

p′
i = pi · αi

∑
1≤j≤T pj · αj

, (5)

where T is the number of isoforms of the gene and α is a vector whose entries sum to 1.
This Aitchison perturbation computes the product of corresponding entries in the two
vectors and divides each entry in the resulting vector by the sum of its entries. For exam-
ple, if a gene has two isoformswith fractions (0.4,0.6) in condition 1, and α is (0.6,0.4), then
the Aitchison perturbation will map the fraction of each isoforms to 0.4·0.6

0.6·0.4+0.4·0.6 = 0.5 in
condition 2. A vector whose entries are equal and sum to 1 is the identity element of the
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Abelian group defined on the simplex by the Aitchison perturbation. Therefore, a gene
is not differentially spliced if and only if all the entries of α are equal. The prior on α is
also set to Dirichlet with the vector −→1 . The Dirichlet prior is non-informative and is used
in order not to make prior assumptions on isoform proportions and significant changes
between cases and controls.

Probability of differential expression/splicing

Our interpretation of whether a gene is differentially expressed is based on whether at
least a certain proportion (in the GTEx cohort used in this paper, 99%) of the marginal
posterior distribution of β is either above or below zero (if a gene is differentially
expressed and that proportion is positive, cases are upregulated compared to controls;
if negative, cases are downregulated compared to controls). Specifically, we sum the
marginal probability of β over values that have the same sign as its mean.
In order to assess differential splicing, we examine Pαi(x), defined as the marginal pos-

terior of α for isoform i. If there is no differential splicing, then α =[ 1
T ,

1
T , ...,

1
T ], where T

is the number of isoforms. To determine whether a gene is differentially spliced, we exam-
ine the proportion of the distribution Pαi(x− 1

T ) that is above or below zero. If the bulk of
the distribution (we used a threshold 99% for the analyses reported in this work) is above
zero, then isoform i is upregulated in cases compared to controls, and vice versa. For
the determination of gene-level differential splicing (i.e., deciding whether one or more
isoforms is differentially spliced), the maximum probability over all isoforms is reported.
HBA-DEALS can also perform specific isoform-level analysis by setting the

isoform.level parameter to true. We first note that if there is no differential splic-
ing, the dot product between α and p (the vector of frequencies of individual isoforms in
controls) is α · p = 1

T . This is not true in general, and if there is differential splicing, α · p
can be greater or less than 1

T . HBA-DEALS calculates the probability that the ith isoform
is differentially spliced by assessing the proportion of the distribution Pαi(x − α · p) that
is above (more of the ith isoform is present in controls) or below (less of the ith isoform
is present in controls) zero. Again, if the bulk of the distribution (99.9% for the analysis
reported here) is above zero, then isoform i is upregulated in cases compared to controls,
and vice versa.
For the comparisons shown in Fig. 2b, isoform-level analysis was performed. For the

remaining analyses, gene-level analysis of differential splicing was performed.
Finally, we classify a gene as DGE if the probability obtained for β as described

above was above the probability threshold for differential expression and the probability
obtained for α did not pass the probability threshold for differential splicing. We classify
a gene as DAST if the probability obtained for β was not above the probability threshold
for differential expression and the probability obtained for α was above the probability
threshold for differential splicing. HBA-DEALS reports the mean posterior probabilities
and the user can choose thresholds appropriate to the analysis.

MCMC

We used the stan package via its R interface rstan [44] for finding the posterior probabili-
ties. For the GTEx dataset, we set the number of chains to 1, the number of warmup steps
to 2000, and the number of total steps to 10000. For the simulation, we set the number of
steps to 100000, and the number of warmup iterations to 10000. We used the R package
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coda to parse the results. For MCMC initialization, gene expression values are set to the
log-transformed sum of isoform counts, β is set to 0, isoform fractions in controls are set
to the observed fractions pi = 2tri

∑
1≤j≤T 2trj

where tri is the log-cpm level of the ith isoform,

and α’s entries are set to uniform values that sum to 1, i.e., αi = 1
T where T is the number

of isoforms. All other parameters for stan were the defaults defined by rstan, including
the No-U-Turn Sampler (NUTS).

Optimal splicing using the t-statistic and proportions (OSTP)

In each sample, we divided the level of each isoform by the sum of levels of the other iso-
forms to obtain isoform proportions. For each proportion of false positives (FP), we found
the t-statistic that maximizes the proportion of true positives (TP) in each simulated
dataset, where the proportion of TPs is the proportion of differentially spliced isoforms
with a fold change of 2 or greater that are detected. We here refer to the results obtained
in this way as Optimal splicing using the t-statistic and proportions, or OSTP.

GTEx dataset

The genome-wide, cross-tissue expression profiling provided by GTEx
includes over 17 thousand expression samples from 948 donors in 54
tissues [15]. RSEM [17] isoform counts were extracted from the file
GTEx_Analysis_2016-01-15_v7_RSEMv1.2.22_transcript_expected_

count.txt, which is available from the GTEx portal [15]. This file contains
RSEM counts for multiple isoforms of different genes identified by Ensembl IDs,
in different tissues of different donors. We used biomaRt to map Ensembl IDs to
HGNC gene symbols [45]. The sample annotations were extracted from the file
GTEx_v7_Annotations_SampleAttributesDS.txt, which contains data from
8444 samples from 703 donors.

Robustness analysis of HBA-DEALS

We reasoned that if HBA-DEALS is able to robustly identify mRNAs that are consistently
differentially expressed, alternatively spliced, both, or neither, then we should observe a
high level of consistency in its results for subsets of samples in the GTEx dataset. There-
fore, for each pair of tissues, we randomly divided the data into sub-cohorts of 30 samples,
15 from each condition, keeping transcripts that had a count of at least 1 in each sub-
cohort sample. We then ran HBA-DEALS on each sub-cohort separately and compared
the sets of genes and isoforms that were identified as differentially expressed and differ-
entially spliced, respectively. There was a highly significant overlap amongst both genes
and isoforms that were consistently identified between cohorts. We then compared the
changes in gene expression levels and isoform proportions quantitatively, by comput-
ing R2 for the log-fold expression changes of each gene and log-fold isoform proportion
changes of each isoform. This resulted in high correlation between cohorts in the differ-
ent tissues (Fig. 2c, d). As expected, tissues that were not related showed an overall higher
correlation, since differences between tissues are much greater than differences between
donors.
Fold changes in expression were calculated as the mean of the posterior of β , and fold

changes in splicing as the Aitchison perturbation between the mean of the posterior of
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the fraction in controls and the mean of the posterior of α divided by the mean of the
posterior of the fraction in controls.
To further determine the robustness of the set of isoforms that were identified as dif-

ferentially spliced, we converted the GTEx expression data into isoform proportions and
selected the set of isoforms that were differentially spliced in at least 3 cohorts and had
a fold change of at least 2 for a multidimensional scaling of all the samples together. We
used the R function cmdscale. The clear separation between samples belonging to differ-
ent tissues confirmed the robustness of the isoforms identified in individual cohorts and
their consistency as a set. In order to validate the visual observation, we computed the
ratio of the mean between-tissue-distances to within-tissue-distances in the MDS for the
real data and for 1000 permutations of the tissue labels, for each pair of tissues. We then
counted the number of times that a value computed for the permuted labels was greater
or equal to the corresponding value computed for the original labels. For all 10 tissue
pairs, this did not occur in any of the permutations, corresponding to a p value < 0.001
that a separation between two labels occurred by chance.

Multidimensional scaling

Multidimensional scaling (MDS) is a nonlinear transformation that translates a matrix
of pairwise distances between objects into a two-dimensional visualization of the objects
that preserves the pairwise distances as much as possible [25, 46].

Gene Ontology analysis

For Gene Ontology enrichment analysis, we used the program Ontologizer [47], using
the Parent-Child Intersection algorithm [48]. The population set was composed of all the
genes that passed the minimum-counts threshold, i.e., that participated in the analysis.
The complete lists of GO categories with Bonferroni-corrected p values less or equal to
0.01 are given in Additional file 1: Tables S5, S6, S7, and S8. We used the go.obo and
goa_human.gaf files downloaded on December 2, 2019.

Defining four mRNA categories

Wedefine splicing-regulated genes as genes for which differential splicing was observed at
least twice as often as differential expression, and expression-regulated genes as genes for
which differential expression was observed at least twice as often as differential splicing
of one of the isoforms.

Additional data sources

We have used several additional data sources in order to characterize the properties of
splicing- and expression-regulated genes. Transcription start site (TSS) dispersion was
obtained based on data from the FANTOM project portal [49]. For TF targets, we used
the file hg38.gencode_v28.TF_HUMAN.tsv, where TF is the transcription factor
name. Gene lengths were retrieved using the biomaRt R package. Exon and isoform anno-
tations were taken from the file Homo_sapiens.GRCh38.91.gtf that was download
from the Ensembl website. The methylation datasets were downloaded from MethBank
[50]. The age groups were age0, age2-4, age5-13, age14-16, age17-28, age29-36, age37-42,
age43-53, age54-66, age67-75, age76-88, and age89-101.
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Simulation

We used the code provided with [6] to simulate isoform levels and followed the method-
ology that was used to add differential expression for adding differential splicing. For
each gene, a number of expressed isoforms was randomly generated between 2 and 10
using the probabilities 0.4,0.2,0.1,0.05,0.05,0.05,0.05,0.05,0.05. The proportions of genes
were then divided by the corresponding number of isoforms. A set of differentially spliced
genes was selected at random. In the original code, a gene’s proportion is multiplied by 2
in either cases or controls to generate differential expression. Therefore, for each differ-
entially spliced gene, the proportion of one random isoform was increased 2-fold in cases,
and the proportion of another isoform was increased 2-fold in controls. This ensures that
the total proportion of the gene remains unchanged. After generating isoform propor-
tions, the simulation proceeds as the original code. We generated datasets with random
seeds 1–50. The first 25 were generated using equal library sizes and the last 25 with
unequal library sizes. The input to rMATS consists of counts for “skip” and “inclusion”,
each representing a distinct isoform.We set for each isoform the “skip” count as the num-
ber of counts of the isoform, and the “inclusion” count the number of counts of the other
isoforms. We set isoform length to 1 and the PSI cutoff to 1e−10. Tools provided as R
packages were used according to the usage instructions in the packages. In order to gen-
erate mean precision-recall curves, we fitted a trendline with the function lowess in the R
package limma to the precision and recall values for each tool in each dataset. For miss-
ing precision values, we added points with the nearest lower recall value. The mean of the
trendline values over all the datasets was then computed for each tool to obtain the mean
precision-recall curve. For the precision-recall plots in Fig. 2a-b, 1-precision (FDR) is
measured for statistic values between 0 and 1 in intervals of 10−4 for both expression and
splicing.
The following command generates a simulated dataset using the HBA-DEALS R pack-

age: hbadeals::simulate(rseed=1). For this manuscript, 50 simulated datasets
were generated using seeds 1 to 50.

Statistical tests

For performing the Mann-Whitney test and Fisher’s exact test, creating the logistic
regression model, computing the hypergeometric cdf, the t-statistic, and the Mann-
Whitney statistic, we used the coremodules from the R programming language version 3.4.1.

Dispersion

Promoters can be characterized as either sharp type or broad type, depending on whether
they contain one dominant transcription start site or multiple transcription start sites
[51]. Cap analysis of gene expression (CAGE) can be used to identify transcription start
sites in promoters. CAGE experiments generate sets of 20- to 27-bp sequence tags from
the 5′ ends of mRNA, which can be matched to a reference genome. Any accumulation of
tags (“peak”) is a reliable indicator of a transcription start site.
Based on FANTOM5 data [52], we computed dispersion indexes of CAGE tags for all

promoter sequences, a metric that is conceptually similar to the standard deviation of
tag counts [53]. A low dispersion index indicates a sharp distribution of tags, and a high
dispersion index indicates a broad distribution of tags. To compute dispersion indexes,
we counted tags between positions − 100 and + 100 relative to and on the same strand as
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the annotated transcription start sites. Let s be the dispersion index and xi be the number
of tags at position i. Then,

c =
100∑

i=−100
xi m = 1

c

100∑

i=−100
xii s =

√
√
√
√1

c

100∑

i=−100
xi(i − m)2

The significance of the difference between the DAST and the DGE groups was
determined using the Mann-Whitney test.

CpG islands

In the human genome, CpG dinucleotides are present at about 20% of the frequency that
would be expected based on the overall GC content. The depletion of CpG dinucleotides
in the human and othermammalian genomes is due to the increasedmutability of methyl-
cytosine within CpG dinucleotides. Stretches of GC-rich (∼ 65%) sequence in which the
observed frequency of CpG dinucleotides is close to the frequency that would be expected
based on the individual frequency of G and C bases are termed CpG islands (CGIs). CGIs
are associated with the upstream region of many genes generally covering all or part of
the promoter and typically display an average size of about 1 kb [54, 55].
To identify CGIs in this study, a 100-nucleotide window was shifted in 1-bp inter-

vals across the promoter sequences from position [−200,−100) relative to the TSS to
(+100,+200]. The percentage GC content and CpG observed/expected ratio

NumberofCpG
NumberofC × NumberofG

× 100
were calculated per window.
A promoter was considered having a CGI if the consecutive windows inside any region

spanning at least 200 nt all had GC contents ≥ 50% and CpG observed/expected ratios
≥ 0.6 [56].
The significance of the difference between the DAST and DGE groups was determined

using the Mann-Whitney test.

TATA box

TATA boxes were identified as described [57].

Number of isoforms

The number of isoforms per gene was retrieved from the GTF file
Homo_sapiens.GRCh38.91.gtf. The significance of the difference between the
DAST and DGE groups was determined using the Mann-Whitney test.

Exon length

Exon lengths were retrieved from the GTF file +Homo_sapiens.GRCh38.91.gtf+.
Overall gene length was retrieved from biomaRt [45]. The significance of the difference
between the DAST and DGE groups was determined using the Mann-Whitney test.

Software

HBA-DEALS is implemented as an R package that is freely available under the GNUGen-
eral Public License version 3 (GPL3) at https://github.com/TheJacksonLaboratory/HBA-
DEALS.

https://github.com/TheJacksonLaboratory/HBA-DEALS
https://github.com/TheJacksonLaboratory/HBA-DEALS


Karlebach et al. Genome Biology          (2020) 21:171 Page 18 of 20

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13059-020-02072-6.

Additional file 1: Supplemental material with figures S1-S10 and tables S1-S10.

Additional file 2: Review history.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in
collaboration with the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
GK and PNR developed the algorithm and wrote the manuscript. PH, DTFV, RS, DD, SL, and OA contributed to the
bioinformatic and statistical analysis. The authors read and approved the final manuscript.

Funding
This work was supported by internal Jackson Laboratory funding and the Donald A. Roux Family Fund.

Availability of data andmaterials
HBA-DEALS is implemented as an R package that is freely available under the GNU General Public License version 3
(GPL3) at https://github.com/TheJacksonLaboratory/HBA-DEALS [58].
The GTEx data used for several analyses described here was derived from the files
GTEx_Analysis_2016-01-15_v7_RSEMv1.2.22_transcript_expected_count.txt, and
GTEx_v7_Annotations_SampleAttributesDS.txt. The files can be downloaded from the GTEx portal at
https://gtexportal.org/home/.
The version of HBA-DEALS used to generate the results in this paper is available as a tagged version (v1.0) in the
GibHub repository. To obtain this version, clone the respository and enter git checkout v1.0. The
“Methods” section described how to generate the simulated datasets used in this work.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA. 2Charité - Universitätsmedizin Berlin,
Institute of Medical Genetics and Human Genetics, 13353 Berlin, Germany. 3Berlin Institute of Health (BIH), 10117 Berlin,
Germany. 4Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032 USA.

Received: 9 January 2020 Accepted: 11 June 2020

References
1. Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS. Long reads: their purpose and place. Hum Mol Genet.

2018;27:234–41. https://doi.org/10.1093/hmg/ddy177.
2. Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

https://doi.org/10.1038/nrg2484.
3. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20:631–56. https://doi.org/

10.1038/s41576-019-0150-2.
4. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital

gene expression data. Bioinformatics (Oxford, England). 2010;26:139–40. https://doi.org/10.1093/bioinformatics/
btp616.

5. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2,.
Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.

6. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read
counts. Genome Biol. 2014;15:29. https://doi.org/10.1186/gb-2014-15-2-r29.

7. Sterne-Weiler T, Weatheritt RJ, Best AJ, Ha KCH, Blencowe BJ. Efficient and accurate quantitative profiling of
alternative splicing patterns of any complexity on a laptop. Mol Cell. 2018;72(1):187–2006. https://doi.org/10.1016/j.
molcel.2018.08.018.

8. Shen S, Park JW, Lu Z-x, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y. rMATS: robust and flexible detection of
differential alternative splicing from replicate RNA-Seq data. Proc Nat Acad Sci U S A. 2014;111:5593–601. https://doi.
org/10.1073/pnas.1419161111.

9. Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform
regulation. Nat Methods. 2010;7(12):1009–15. https://doi.org/10.1038/nmeth.1528.

10. Hu Y, Huang Y, Du Y, Orellana CF, Singh D, Johnson AR, Monroy A, Kuan P-F, Hammond SM, Makowski L,
Randell SH, Chiang DY, Hayes DN, Jones C, Liu Y, Prins JF, Liu J. DiffSplice: the genome-wide detection of
differential splicing events with RNA-seq. Nucleic Acids Res. 2012;41(2):39. https://doi.org/10.1093/nar/gks1026.

https://doi.org/10.1186/s13059-020-02072-6
https://github.com/TheJacksonLaboratory/HBA-DEALS
https://gtexportal.org/home/
https://doi.org/10.1093/hmg/ddy177
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1016/j.molcel.2018.08.018
https://doi.org/10.1016/j.molcel.2018.08.018
https://doi.org/10.1073/pnas.1419161111
https://doi.org/10.1073/pnas.1419161111
https://doi.org/10.1038/nmeth.1528
https://doi.org/10.1093/nar/gks1026


Karlebach et al. Genome Biology          (2020) 21:171 Page 19 of 20

11. Sebestyén E, Zawisza M, Eyras E. Detection of recurrent alternative splicing switches in tumor samples reveals novel
signatures of cancer. Nucleic Acids Res. 2015;43(3):1345–56. https://doi.org/10.1093/nar/gku1392.

12. Kahles A, Ong CS, Zhong Y, Rätsch G. SplAdder: identification, quantification and testing of alternative splicing
events from RNA-seq data. Bioinformatics. 2016;32(12):1840–7. https://doi.org/10.1093/bioinformatics/btw076.

13. Climente-González H, Porta-Pardo E, Godzik A, Eyras E. The functional impact of alternative splicing in cancer. Cell
Rep. 2017;20(9):2215–26. https://doi.org/10.1016/j.celrep.2017.08.012.

14. Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds systems biology. Biol Direct. 2009;4:14.
https://doi.org/10.1186/1745-6150-4-14.

15. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5. https://doi.org/10.
1038/ng.2653.

16. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of
transcript expression. Nat Methods. 2017;14:417–9. https://doi.org/10.1038/nmeth.4197.

17. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome.
BMC bioinformatics. 2011;12:323. https://doi.org/10.1186/1471-2105-12-323.

18. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol.
2016;34:525–7. https://doi.org/10.1038/nbt.3519.

19. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved
reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5. https://doi.org/10.1038/nbt.
3122.

20. Tardaguila M, de la Fuente L, Marti C, Pereira C, Pardo-Palacios FJ, Del Risco H, Ferrell M, Mellado M, Macchietto
M, Verheggen K, Edelmann M, Ezkurdia I, Vazquez J, Tress M, Mortazavi A, Martens L, Rodriguez-Navarro S,
Moreno-Manzano V, Conesa A. SQANTI: extensive characterization of long-read transcript sequences for quality
control in full-length transcriptome identification and quantification. Genome Res. 2018;28(3):396–411. https://doi.
org/10.1101/gr.222976.117.

21. Aitchison J. The statistical analysis of compositional data: Springer Netherlands; 1986. https://doi.org/10.1007/978-
94-009-4109-0.

22. Geweke J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In:
Bernado JM, Berger JO, Dawid AP, Smith AFM, editors. Bayesian statistics 4. Oxford: Clarendon Press; 1992. p.
169–193.

23. Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence
count data. BMC bioinformatics. 2010;11:422. https://doi.org/10.1186/1471-2105-11-422.

24. Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, Nueda MJ, Ferrer A, Conesa A. Data quality aware analysis of
differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43:140. https://doi.org/10.
1093/nar/gkv711.

25. Mardia KV. Some properties of clasical multi-dimesional scaling. Commun Stat Theory Methods. 1978;7(13):1233–41.
https://doi.org/10.1080/03610927808827707.

26. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res.
2017;45:331–8. https://doi.org/10.1093/nar/gkw1108.

27. Fu X-D, Ares M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15:
689–701. https://doi.org/10.1038/nrg3778.

28. Pimentel H, Parra M, Gee SL, Mohandas N, Pachter L, Conboy JG. A dynamic intron retention program enriched in
rna processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2016;44:838–51.
https://doi.org/10.1093/nar/gkv1168.

29. Rodríguez SA, Grochová D, McKenna T, Borate B, Trivedi NS, Erdos MR, Eriksson M. Global genome splicing
analysis reveals an increased number of alternatively spliced genes with aging. Aging cell. 2016;15:267–78. https://
doi.org/10.1111/acel.12433.

30. Shirai CL, Ley JN, White BS, Kim S, Tibbitts J, Shao J, Ndonwi M, Wadugu B, Duncavage EJ, Okeyo-Owuor T, Liu T,
Griffith M, McGrath S, Magrini V, Fulton RS, Fronick C, O’Laughlin M, Graubert TA, Walter MJ. Mutant U2AF1
expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer cell. 2015;27:631–43. https://doi.org/10.
1016/j.ccell.2015.04.008.

31. Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, Kang D, Richman R, Johnson JM, Berget S,
Zoghbi HY. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding
protein 2. Proc Nat Acad Sci U S A. 2005;102:17551–8. https://doi.org/10.1073/pnas.0507856102.

32. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer
S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479:74–79. https://
doi.org/10.1038/nature10442.

33. Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genetics TIG.
2015;31:274–80. https://doi.org/10.1016/j.tig.2015.03.002.

34. Cramer P, Cáceres JF, Cazalla D, Kadener S, Muro AF, Baralle FE, Kornblihtt AR. Coupling of transcription with
alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol
Cell. 1999;4:251–8. https://doi.org/10.1016/s1097-2765(00)80372-x.

35. Damgaard CK, Kahns S, Lykke-Andersen S, Nielsen AL, Jensen TH, Kjems J. A 5’ splice site enhances the recruitment
of basal transcription initiation factors in vivo. Mol Cell. 2008;29:271–8. https://doi.org/10.1016/j.molcel.2007.11.035.

36. Giurgiu M, Reinhard J, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Ruepp A. CORUM: the
comprehensive resource of mammalian protein complexes—2019. Nucleic Acids Res. 2019;47:559–63. https://doi.
org/10.1093/nar/gky973.

37. Malygin AA, Parakhnevitch NM, Ivanov AV, Eperon IC, Karpova GG. Human ribosomal protein s13 regulates
expression of its own gene at the splicing step by a feedback mechanism. Nucleic Acids Res. 2007;35:6414–23.
https://doi.org/10.1093/nar/gkm701.

https://doi.org/10.1093/nar/gku1392
https://doi.org/10.1093/bioinformatics/btw076
https://doi.org/10.1016/j.celrep.2017.08.012
https://doi.org/10.1186/1745-6150-4-14
https://doi.org/10.1038/ng.2653
https://doi.org/10.1038/ng.2653
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1101/gr.222976.117
https://doi.org/10.1101/gr.222976.117
https://doi.org/10.1007/978-94-009-4109-0
https://doi.org/10.1007/978-94-009-4109-0
https://doi.org/10.1186/1471-2105-11-422
https://doi.org/10.1093/nar/gkv711
https://doi.org/10.1093/nar/gkv711
https://doi.org/10.1080/03610927808827707
https://doi.org/10.1093/nar/gkw1108
https://doi.org/10.1038/nrg3778
https://doi.org/10.1093/nar/gkv1168
https://doi.org/10.1111/acel.12433
https://doi.org/10.1111/acel.12433
https://doi.org/10.1016/j.ccell.2015.04.008
https://doi.org/10.1016/j.ccell.2015.04.008
https://doi.org/10.1073/pnas.0507856102
https://doi.org/10.1038/nature10442
https://doi.org/10.1038/nature10442
https://doi.org/10.1016/j.tig.2015.03.002
https://doi.org/10.1016/s1097-2765(00)80372-x
https://doi.org/10.1016/j.molcel.2007.11.035
https://doi.org/10.1093/nar/gky973
https://doi.org/10.1093/nar/gky973
https://doi.org/10.1093/nar/gkm701


Karlebach et al. Genome Biology          (2020) 21:171 Page 20 of 20

38. Takei S, Togo-Ohno M, Suzuki Y, Kuroyanagi H. Evolutionarily conserved autoregulation of alternative pre-mRNA
splicing by ribosomal protein L10a. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkw152.

39. Lareau LF, Brenner SE. Regulation of splicing factors by alternative splicing and NMD is conserved between
kingdoms yet evolutionarily flexible. Mol Biol Evol. 2015;32:1072–9. https://doi.org/10.1093/molbev/msv002.

40. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, Akalin A, Schmeier S, Kanamori-Katayama M,
Bertin N, et. al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 2010;140:744–52. https://
doi.org/10.1016/j.cell.2010.01.044.

41. Louadi Z, Tayara H, Oubounyt M. Deep splicing code: classifying alternative splicing events using deep learning.
Genes. 2019;10:. https://doi.org/10.3390/genes10080587.

42. Bao S, Moakley DF, Zhang C. The splicing code goes deep. Cell. 2019;176(3):414–6. https://doi.org/10.1016/j.cell.
2019.01.013.

43. Cramer P. Organization and regulation of gene transcription. Nature. 2019;573:45–54. https://doi.org/10.1038/
s41586-019-1517-4.

44. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A. Stan: A
probabilistic programming language. J Stat Softw. 2017;76(1):. https://doi.org/10.18637/jss.v076.i01.

45. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A. Biomart–biological queries made
easy. BMC genomics. 2009;10:22. https://doi.org/10.1186/1471-2164-10-22.

46. Hout MC, Papesh MH, Goldinger SD. Multidimensional scaling. Wiley Interdiscip Rev Cogn Sci. 2013;4:93–103.
https://doi.org/10.1002/wcs.1203.

47. Bauer S, Grossmann S, Vingron M, Robinson PN. Ontologizer 2.0–a multifunctional tool for GO term enrichment
analysis and data exploration. Bioinformatics (Oxford, England). 2008;24:1650–1. https://doi.org/10.1093/
bioinformatics/btn250.

48. Grossmann S, Bauer S, Robinson PN, Vingron M. Improved detection of overrepresentation of Gene-Ontology
annotations with parent child analysis. Bioinformatics (Oxford, England). 2007;23:3024–31. https://doi.org/10.1093/
bioinformatics/btm440.

49. Noguchi S, Arakawa T, Fukuda S, Furuno M, Hasegawa A, Hori F, Ishikawa-Kato S, Kaida K, Kaiho A,
Kanamori-Katayama M, et. al. FANTOM5 CAGE profiles of human and mouse samples. Sci Data. 2017;4:170112.
https://doi.org/10.1038/sdata.2017.112.

50. Li R, Liang F, Li M, Zou D, Sun S, Zhao Y, Zhao W, Bao Y, Xiao J, Zhang Z. MethBank 3.0: a database of DNA
methylomes across a variety of species. Nucleic Acids Res. 2018;46:288–95. https://doi.org/10.1093/nar/gkx1139.

51. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engström PG,
Frith MC, et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet. 2006;38(6):
626–35. https://doi.org/10.1038/ng1789.

52. Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drabløs F, Lennartsson A, Rönnerblad M, Hrydziuszko O,
Vitezic M, et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells.
Science. 2015;347(6225):1010–4. https://doi.org/10.1126/science.1259418.

53. Dreos R, Ambrosini G, Bucher P. Influence of rotational nucleosome positioning on transcription start site selection
in animal promoters. PLoS Comput Biol. 2016;12:1005144. https://doi.org/10.1371/journal.pcbi.1005144.

54. Larsen F, Gundersen G, Lopez R, Prydz H. Cpg islands as gene markers in the human genome. Genomics. 1992;13:
1095–107. https://doi.org/10.1016/0888-7543(92)90024-m.

55. Robinson PN, Böhme U, Lopez R, Mundlos S, Nürnberg P. Gene-Ontology analysis reveals association of
tissue-specific 5’ CpG-island genes with development and embryogenesis. Hum Mol Genet. 2004;13:1969–78.
https://doi.org/10.1093/hmg/ddh207.

56. Gardiner-Garden M, Frommer M. Cpg islands in vertebrate genomes. J Mol Biol. 1987;196:261–82. https://doi.org/
10.1016/0022-2836(87)90689-9.

57. Steinhaus R, Gonzalez T, Seelow D, Robinson PN. Pervasive and CpG-dependent promoter-like characteristics of
transcribed enhancers. Nucleic Acids Res. 2020;48(10):5306–17. https://doi.org/10.1093/nar/gkaa223.

58. Karlebach G, Robinson PN. Hierarchical Bayesian analysis of Differential Expression and ALternative Splicing
(HBA-DEALS): GitHub repository. 2019. https://github.com/TheJacksonLaboratory/HBA-DEALS.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/nar/gkw152
https://doi.org/10.1093/molbev/msv002
https://doi.org/10.1016/j.cell.2010.01.044
https://doi.org/10.1016/j.cell.2010.01.044
https://doi.org/10.3390/genes10080587
https://doi.org/10.1016/j.cell.2019.01.013
https://doi.org/10.1016/j.cell.2019.01.013
https://doi.org/10.1038/s41586-019-1517-4
https://doi.org/10.1038/s41586-019-1517-4
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1186/1471-2164-10-22
https://doi.org/10.1002/wcs.1203
https://doi.org/10.1093/bioinformatics/btn250
https://doi.org/10.1093/bioinformatics/btn250
https://doi.org/10.1093/bioinformatics/btm440
https://doi.org/10.1093/bioinformatics/btm440
https://doi.org/10.1038/sdata.2017.112
https://doi.org/10.1093/nar/gkx1139
https://doi.org/10.1038/ng1789
https://doi.org/10.1126/science.1259418
https://doi.org/10.1371/journal.pcbi.1005144
https://doi.org/10.1016/0888-7543(92)90024-m
https://doi.org/10.1093/hmg/ddh207
https://doi.org/10.1016/0022-2836(87)90689-9
https://doi.org/10.1016/0022-2836(87)90689-9
https://doi.org/10.1093/nar/gkaa223
https://github.com/TheJacksonLaboratory/HBA-DEALS

	HBA-DEALS: accurate and simultaneous identification of differential expression and splicing using hierarchical Bayesian analysis.
	Authors

	Abstract
	Keywords

	Background
	Results
	A Bayesian model for simultaneous assessment of differential expression and splicing
	Model validation
	HBA-DEALS defines four categories of genes that differ with respect to splicing and expression
	Pervasive differences in the genomic characteristics of DAST and DGE genes
	Networks of splicing-regulated transcription factors

	Discussion
	Conclusions
	Methods
	HBA-DEALS: Hierarchical Bayesian Analysis of Differential Expression and ALternative Splicing
	Assessment of DGE
	Assessment of DAST
	Probability of differential expression/splicing
	MCMC
	Optimal splicing using the t-statistic and proportions (OSTP)
	GTEx dataset
	Robustness analysis of HBA-DEALS
	Multidimensional scaling
	Gene Ontology analysis
	Defining four mRNA categories
	Additional data sources
	Simulation
	Statistical tests
	Dispersion
	CpG islands
	TATA box
	Number of isoforms
	Exon length
	Software

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s13059-020-02072-6.
	Additional file 1
	Additional file 2

	Peer review information
	Review history
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher's Note

