35 research outputs found

    Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography

    Get PDF
    Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 angstrom resolution and determine its serial femtosecond crystallography structure to 3.5 angstrom resolution. Although every microcrystal is exposed to a dose of 33MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure

    Femtosecond dark-field imaging with an X-ray free electron laser

    Get PDF
    The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples. (C) 2012 Optical Society of Americ

    Noise-robust coherent diffractive imaging with a single diffraction pattern

    Get PDF
    The resolution of single-shot coherent diffractive imaging at X-ray free-electron laser facilities is limited by the low signal-to-noise level of diffraction data at high scattering angles. The iterative reconstruction methods, which phase a continuous diffraction pattern to produce an image, must be able to extract information from these weak signals to obtain the best quality images. Here we show how to modify iterative reconstruction methods to improve tolerance to noise. The method is demonstrated with the hybrid input-output method on both simulated data and single-shot diffraction patterns taken at the Linac Coherent Light Source. (C) 2012 Optical Society of Americ

    Optimal mapping of x-ray laser diffraction patterns into three dimensions using routing algorithms

    No full text
    Coherent diffractive imaging with x-ray free-electron lasers (XFEL) promises high-resolution structure determination of noncrystalline objects. Randomly oriented particles are exposed to XFEL pulses for acquisition of two-dimensional (2D) diffraction snapshots. The knowledge of their orientations enables 3D imaging by multiview reconstruction, combining 2D diffraction snapshots in different orientations. Here we introduce a globally optimal algorithm that can infer these orientations. We apply it to experimental XFEL data of nanoparticles and so determine their 3D electron density

    Optimal mapping of x-ray laser diffraction patterns into three dimensions using routing algorithms

    No full text
    Coherent diffractive imaging with x-ray free-electron lasers (XFEL) promises high-resolution structure determination of noncrystalline objects. Randomly oriented particles are exposed to XFEL pulses for acquisition of two-dimensional (2D) diffraction snapshots. The knowledge of their orientations enables 3D imaging by multiview reconstruction, combining 2D diffraction snapshots in different orientations. Here we introduce a globally optimal algorithm that can infer these orientations. We apply it to experimental XFEL data of nanoparticles and so determine their 3D electron density

    An anti-settling sample delivery instrument for serial femtosecond crystallography

    No full text
    Serial femtosecond crystallography (SFX) using X−ray free−electron laser (FEL) sources has the potential to determine the structures of macromolecules beyond the limitation of radiation damage and without the need for crystals of sufficient size for conventional crystallography. In SFX, a liquid microjet is used to inject randomly oriented crystals suspended in their storage solution into the FEL beam. Settling of crystals in the reservoir prior to the injection has been found to complicate the data collection. This article details the development of an antisettling sample delivery instrument based on a rotating syringe pump, capable of producing flow rates and liquid pressures necessary for the operation of the injector. The device has been used successfully with crystals of different proteins, with crystal sizes smaller than 20 mm. Even after hours of continuous operation, no significant impairment of the experiments due to sample settling was observed. This article describes the working principle of the instrument and sets it in context with regard to the experimental conditions used for SFX. Hit rates for longer measuring periods are compared with and without the instrument operating. Two versions of the instrument have been developed, which both deliver sample at a constant flow rate but which differ in their minimum liquid flow rates and maximum pressure

    High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    No full text
    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy
    corecore