Noise-robust coherent diffractive
imaging with a single diffraction pattern
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Abstract:  The resolution of single-shot coherent diffractive imaging at
X-ray free-electron laser facilities is limited by the low signal-to-noise level
of diffraction data at high scattering angles. The iterative reconstruction
methods, which phase a continuous diffraction pattern to produce an image,
must be able to extract information from these weak signals to obtain the
best quality images. Here we show how to modify iterative reconstruction
methods to improve tolerance to noise. The method is demonstrated with
the hybrid input-output method on both simulated data and single-shot
diffraction patterns taken at the Linac Coherent Light Source.
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1. Introduction

Coherent diffractive imaging (CDI) is a lenless imaging technique which has the potential to
achieve resolutions that are not limited by a lens or other focusing optics. There has been steady
development of the technique over the last decade with X-rays [1, 2] and electrons [3], includ-
ing applications in both materials science [4] and biology [5-7]. Resolutions that are typically
achieved with X-rays are of the order of tens of nanometers [2, 7]. The success of these ex-
periments depends critically on the performance of phase retrieval methods, which determine
the phases that correspond to the measured far-field diffraction intensities. The robustness of
iterative phasing methods to noise has also been identified as a key issue that determines the
success of CDI experiments [8-10]. To overcome the limitations of the standard CDI exper-
iment, more elaborate experiments have been developed including ptychography [11, 12] and
CDI with a curved incident wave front [13]. Without detracting from the successes of these
more elaborate phasing experiments, the standard CDI experiment with an incident plane wave
is experimentally the simplest and, for some applications, still the preferable way to implement
CDI.

One example is CDI with X-ray free electron lasers (XFELSs). A lens-based microscopy is
yet to be demonstrated with an XFEL due to the high intensity of the X-ray pulses. Since the
sample is destroyed by a single pulse, single-measurement CDI is the primary imaging tech-
nique currently used [2,7,14]. XFELs also provide unique applications for CDI imaging, like
complex, heterogeneous samples in their native state. Airborne particles, like particulate matter,
can be imaged in flight avoiding the need to attach them to a substrate [14]. Complex biologi-
cal samples like cells and bacteria can be imaged without freezing, staining or sectioning. For
reproducible samples, it is possible to combine multiple measurements of single particle in un-
known orientations to study the 3D structure. For irreproducible samples, such as particulate
matter or cellular biological samples, 2D imaging is currently the only available imaging tech-
nique with XFELSs. The reliability and performance of single-shot CDI is of key importance for
realizing the potential advantages of imaging experiments with XFELSs.

Iterative phasing methods require as input the intensity of the coherent X-ray wave in the
plane of the detector. Any deviation of the measured intensity from the true intensity of the
X-ray wave can cause errors in the reconstructed image. Hence, any such deviation of the
measured intensity from the intensity of the X-ray wave can be defined as a measurement error
for a CDI experiment, and when this error has the form of a random fluctuation we will refer to
it as noise. Sources of noise can include shot noise, any X-ray signal from sources besides the
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sample and noise associated with the dark current of the detector.

Many iterative methods have been developed to phase a continuous diffraction pattern [15—
17]. Rapid convergence in noise-free simulations shows that these methods can efficiently use
errors from the incorrect diffraction-plane phase to update the image for the next iteration.
They also avoid the local minima which cause the error-reduction method and steepest-descent
methods to stagnate [15]. Unfortunately, the most efficient methods for phase retrieval also
appear to show a sensitivity to experimental noise and, in practice, they are combined with
error-reduction methods [4] or modified to include additional constraints [9]. Another attempt
to improve noise tolerance was based on a modification of the diffraction-plane constraint,
such that the diffraction-plane amplitude of the current iterate was not changed wherever it lies
within the assumed error bound [1]. This modification of the constraint may in fact weaken
the constraint, reducing its effectiveness, and this approach to handling noise has not yet been
generally adopted.

In this paper, we show how to improve the performance of reconstruction methods in the
presence of measurement noise. Pixels in the object plane outside of the object (outside the
support) are categorized by whether their intensity is caused by phase errors or amplitude er-
rors in the diffraction plane. The iterative update is modified to retain the information about
diffraction-plane phase errors, so that they can be corrected, while suppressing information
due to noise. The improvement can be potentially added to any of the existing reconstruction
methods.

2. Theoretical background

2.1. Reconstruction methods

Iterative reconstruction schemes recover the wave function in the exit surface plane, y. In CDI
theory, y is typically written as _
y=Ae, @

where A is known as the amplitude of the complex wave, and ¢ is known as the phase. The
recovery of the exit surface wave is equivalent to determining the phases in the diffraction
plane that correspond to the measured intensity. These methods use the measured diffraction
data as a constraint and enforce additional constraints in the object plane. These constraints
are commonly expressed as projection operators. Defining y = .7 [y], where .# denotes the
Fourier transform, the modulus constraint can be written as

Vinod = Vi) ) 2

where | is the measured diffraction pattern. We define a projection of the wave-function onto
the modulus constraint by

Ymod = Pmod ¥ = yil[llfmod] . (3)
The second constraint is that the object is located within a known region of finite extent called
the support, denoted by S. The support projection is

, €8S
PsupW:{ V(/) ¢S. (4)

3
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Using this notation, some of the popular reconstruction methods are as follows:

ER [15] : vV = PypProay™ | (5)
(n)
€S
HIO [15] : y(™*D) = { Yimod 6)
y —Byln ¢s,
DM [16] : ‘I/(m—1> = ‘I/(n) -B [Psup[(]-+ ¥%s)Pmod — %7]
— Prnod[(1+ ¥i)Psup — 7] y™ (7)

and

RAAR [17] : w1 = By + 28R Proay™
+(1—28B)Pmod llf(n> - Bpsup llf<n> ) (8)

where we have used the abbreviations error-reduction (ER), hybrid input-output (H10), differ-
ence map (DM) and relaxed alternating averaged reflections (RAAR). The parameter f3 is real,

# is the identity operator and for DM we assume the optimal convergence parameters, % = ‘71

and ¥, = % given in Ref. [18], .

An important difference between iterative phasing methods is how the value of the iterate y
outside the support is used to form an improved estimate for the next iteration. In the noise-
free case, only errors in the diffraction-plane phase can cause y/r(n"gd to be non-zero outside
the support. Hence, the value of ymoqg Outside the support provides key information about the
diffraction-plane phase errors, which HIO, DM or RAAR can efficiently use to improve the
phase. However, when the diffraction pattern contains noise, ymqqg iS Non-zero outside the sup-
port even when the diffraction-plane phase is correct. In this case, HIO, DM and RAAR use
the errors due to noise to change the diffraction-plane phase, which is not the ideal response to
noise. On the other hand, ER sets the region outside the support to zero, simultaneously sup-
pressing errors in the diffraction-plane intensity and phase. Unfortunately, the well-known stag-
nation issues with ER show this is not a viable approach to determining the correct diffraction-
plane phase. If we have both types of errors, from an incorrect diffraction-plane phase and
noisy intensity data, what is the optimal compromise to make? How can we efficiently correct
the diffraction-plane phase while simultaneously suppressing the effect of measurement noise?

2.2. Behaviour of iterative methods near local minima

It is well-known that the stagnation issues of ER arise because it converges to local minima
with respect to common error metrics [19]. When such a stagnation occurs, the following ap-
proximations apply:

1
Yoo = Vi - ©

and .
‘I/rggj ) ~ PmodPsup‘I/(n) . (10)

Other iterative methods do not exhibit the same stagnation issues and they behave differently
to ER when Egs. (9) and (10) apply. Assuming that Egs. (9) and (10) hold for k iterations, then
outside the support the wave function has the following scaling:
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HIO : y(") o —kﬁwgo)d ZS.

1 1
DM 1 y(™) o —KBProg {<1+ [3> Payp — BI] vy ¢s.

k—1
RAAR : y(") oc —(1-2B)y" Y Bm ¢S,
m=0
(11)

The scaling for HIO and DM is linear with the number of iterations and after a finite number
iterations the approximations, Egs. (9) and (10), no longer apply. When the approximations are
no longer valid, the diffraction-plane phases for iteration n+ k are significantly different from
iteration n. The linear scaling ensures that DM and HIO do not stagnate in the same way as ER,
a property already identified when DM was introduced [16]. For RAAR the intensity outside
the support does not increase linearly but is given by a geometric series that is bounded if 3 is
less than 1. Since the scaling is bounded it is still possible for RAAR to stagnate, although as
B approaches 1 the likelihood of stagnation reduces.

The scaling behaviours given in Eq. (11) also indicate the sensitivity of these methods to
noise. If the diffraction-plane phases are correct at iteration n and the diffraction-plane ampli-

tudes contain noise, then the part of q/;“gd that is outside the support is caused only by errors
from noise. If we assume that this error is small enough that Eq. (9) and (10) hold, then Eq. (11)
shows how each method increases the error due to noise. Since the scaling for HIO and DM is
unbounded, it must continue until the diffraction-plane phases change. This is clearly not the
ideal response to noise, because we have already assumed that at iteration n the phases were
correct.

RAAR shows an increased robustness to noise as 3 is reduced because the scaling is
bounded. However, reducing the parameter 3 increases the likelihood that RAAR stagnates.
This suggests that with RAAR the adjustment of  allows a compromise to be set between
noise-robustness and the likelihood of stagnation. Often with RAAR the value of 3 is set to a
little less than 1, e.g. 0.9, and the gain in noise-tolerance has produced good results in several

experimental applications [2,7,20].

3. Phaseretrieval in the presence of noise

3.1. Estimation of the noise level in the object plane

Considering the scaling behavior in Eq. (11), the region outside the support appears to be a
potentially profitable area to analyze. It is possible to estimate the standard deviation of Wmoqg
outside the support due to the amplitude errors in the detector plane. This is achieved by ap-
plying the central limit theorem to relate the standard deviation of the amplitude error on each
pixel to the standard deviation of o outside the support. In this work we treat shot noise
only. This is modeled by assigning the measured intensity at a pixel to a value drawn randomly
from a Poisson distribution with a mean equal to the intensity of the coherent X-ray wavefront
at that pixel.

We consider the case where the noise is uncorrelated between detector pixels. The amplitudes
calculated from the measured intensities can be written as

V1= lideal + €, (12)

where ligeq) denotes the noise-free diffraction pattern due to the scattering from the sample, and
€ is the amplitude error introduced by the measurement of the diffraction pattern. Using Eq.

#164942 - $15.00 USD Received 28 Mar 2012; revised 14 Jun 2012; accepted 19 Jun 2012; published 9 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20, No. 15/ OPTICS EXPRESS 16655



2.0 .
o(I°%) .-
---IU.S ””O
"'
15 L.
L d
"
"
f"
1.0 -
r'd
4
4
4
054 2
0.0 T T T T T T T 1
0 1 2 3 4

Mean intensity per pixel (I)

Fig. 1. The numerically calculated standard deviation of the square root of the intensity
according to Poisson statistics.

(12), we can decompose ymeqg Outside the support into a function which contains errors due
solely to the diffraction-plane phase y/éme” and a function which contains all the noise errors

W(?grr:

lI’,I'(nn())d = Wémerr + ‘I/rg?grr ¢ S

_ g1 [\/@eiarg(ﬁ/)] = [geiargm?/)] ¢s. (13)

We can write out the noise error term more explicitly in a discrete form as

N . .
Vicn.err = z emek/N 8m(:)larg(q/m) ) (14)
m=0

We denote the value of the measured intensity on a pixel m by Iy, and the value of the amplitude
error on pixel m as &y. If we assume Poisson statistics, then the standard deviation of the
measured intensity on pixel m is

Gm(l) =V Iideal,m (15)

The amplitudes are calculated by taking the square root of the measured intensities, and the
numerically calculated standard deviation of the derived amplitudes is plotted as a function of
mean intensity in Fig. 1. The plot shows that for a mean signal greater than 0.2 photons per
pixel, the standard deviation of the measured amplitude can be approximated as follows

O'm(\ﬁ) ~ ' a\/ Iideal,m

d ligeal ,m

2
62(1)=05. (16)

When the mean intensity is in the range between 0.2 and 3 counts, this approximation is accu-
rate to within 30% and improves as the mean intensity increases. When the mean intensity is
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less than 0.2 photons per pixel, the majority of pixels register either 0 or 1, which are unchanged
by the square root operation and therefore we can approximate

on(V1) ~ \/lideatm - (17)

For pixels with mean intensities close to or less than 1, the approximation . /ligeaim ~ VI is
not valid and Eq. (17) cannot be applied pixel by pixel. Instead the statistics of ym n_err Can be
estimated by using the radially-averaged intensity (I) to determine whether Eq. (16) or Eq.
(17) applies to pixel m, and (Im) can also be substituted for ligea m in Eq. (17). The accuracy of
using the radially averaged intensities was confirmed by the simulation studies in Section 3.2.
Now that we have a means to estimate the standard deviation of the measured amplitude at
each pixel, we can apply the central limit theorem to Eq. (14) to estimate the standard deviation
Of Wi n_err, Which we denote by onoise. In EQ. (14), &n is a random sample from a distribution
with a standard deviation of oy (/1) and the phase factors on the right hand side of Eq. (14)
do not affect the standard deviation of ym n_err. By the central limit theorem, the histogram of

1//,@3” follows a Gaussian distribution and has a standard deviation (cneise) that is given by

N
Onoise = Nz ,%(\/l) : (18)

L

The normalisation of Eq. (18) depends on the particular implementation of the Fourier trans-
form. The non-uniform diffraction pattern determines the length scale over which %([‘3” is
correlated, but does not preferentially locate y/,@e)rr in a particular part of the object plane.

This means over a large enough length scale, %@” appears as a background noise distribu-
tion with a uniform mean and standard deviation. We can use onoise 10 determine a bound that

wé[‘g” is very unlikely to exceed. By analogy with an experimental measurement, we can write

n n n - - . .
yfr(no)d = éhie" =+ Onhoise and treat |1//éh?e”| / Onoise as an effective signal-to-noise ratio.

It should be noted that Eq. (18) applies to other sources of error that contribute to oy (v/1).
We have treated shot noise because it has well-defined statistical properties and has a significant
effect on CDI data. If the contribution of other sources of noise to om(+/1) can be estimated,
then the corresponding effect on oyeise Can also be determined.

3.2.  The modification of a phase retrieval method to improve noise tolerance

The signal-to-noise level can be used to identify the regions outside the support where the

calculation of wr;“gd is reliable, and regions which are dominated by the noise %(?grr. Using this
insight, it is possible to modify existing phase retrieval algorithms to improve their robustness
to noise. A reliable measurement of Wi is considered to be 3opeise. FOr example, a modified

version of the HIO algorithm is as follows

) Yipor» €S
y "=y = Bygoy #S N Wil > 30oise, 19

0, ¢SN |Wr(nn0)d| < 30noise -

An ideal simulated diffraction pattern, Fig. 2(a), and the noisy diffraction pattern, Fig. 2(b),
were simulated from the object shown in Fig. 2(c). The object was constructed from overlap-
ping circles. Shot noise was modeled by assigning the intensity at each pixel to a random sample
from the Poisson distribution with a mean equal to the predicted X-ray intensity, assuming a
total of 10° photons in the entire pattern. When the correct diffraction-plane phases are com-
bined with amplitudes from the noisy diffraction pattern, the image shown in Fig. 2(d) can be
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Fig. 2. (a) The simulated diffraction pattern without noise (cropped) and (b) with Poisson
noise added assuming a total of 10° scattered photons. The diffraction patterns are shown
scaled to the power of 0.1. (c) The object used to simulate the diffraction pattern was
constructed from overlapping circles. (d) The image calculated using the noisy diffraction
amplitudes and the correct phase, which represents the best possible image that could be
reconstructed from noisy data. (e) The reconstruction using a standard HIO method from
diffraction pattern with noise. (f) The reconstruction using the noise tolerant method from
the noisy diffraction pattern. (g) A comparison of the errors as a function of iteration. The
intrinsic noise error is calculated by comparing the noisy diffraction pattern with the noise-
free diffraction pattern.
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formed, which represents the image we aim to recover from the noisy data. The reconstruction
from the noisy diffraction pattern using the standard HIO method is shown in Fig. 2(e) which
was not successful and contains only low resolution features inside the support, as well as sig-
nificant artifacts outside the support. The sharp outline of the object visible in Fig. 2(e) follows
the edge of the support and does not indicate any partial success of the standard HIO method.
When the modified HIO method, defined by Eq. (19), is used the reconstruction is greatly im-
proved, as shown in Fig. 2(f). Fig. 2(g) shows plots of the error calculated with the estimate of
the amplitudes in the diffraction plane and those calculated from the diffraction pattern [2]. The
convergence of the noise-tolerant HIO confirms the improvement that can be seen visually. The
comparison of the diffraction pattern with noise to the ideal diffraction pattern with the same
metric gives a value of 0.07, which indicates the best value we can expect for a reconstruction
with noise. It is particularly encouraging to see that the convergence of the noise-tolerant HIO
follows the convergence of HIO from noise-free diffraction pattern until it reaches this intrinsic
noise level.

4. Experiment

The noise-tolerant HIO was tested on single particle diffraction data taken at the Atomic,
Molecular and Optical Science beamline at LCLS using the CFEL ASG Multi-Purpose
(CAMP) instrument and the pnCCD detectors [21] . The incident energy of individual pho-
tons was set to either 780 eV (1.6 nm) or 1.24 keV (1.0 nm). The dynamic range of the detector
as operated in this experiment was approximately 500 photons at 1.24 keV. The clusters of
polystyrene spheres were injected into the XFEL beam using a differentially pumped aerody-
namic focusing inlet. Individual particles were exposed to vacuum for 1 ms as they traveled
at 100-200 m/s to the interaction region. The detector was approximately 724 mm from the
interaction region. Further parameters and details of the LCLS experiment are given in Loh et
al. [14].

Previous studies on similar LCLS data produced successful reconstructions with a combina-
tion of RAAR and shrinkwrap [7, 14, 20] and achieved resolutions between 20 — 50 nm. The
diffraction patterns shown in Fig. 3(a) were taken from clusters of polystyrene spheres. For the
left pattern the incident photon energy was 780 eV and for the right pattern it was 1.2 keV. The
standard reconstruction using RAAR and shrinkwrap is shown in Fig. 3(b) and the reconstruc-
tion from the noise-tolerant HIO is shown in Fig. 3(c). In both RAAR and noise-tolerant HIO
reconstructions, all parameters were kept at the same values. The feedback parameter § was set
to 0.9. The support was updated every 50 iterations by the same implementation of shrinkwrap
used in Ref. [2] with a threshold of 0.2. The kernel used to smooth the iterate before applying
the threshold was initially set to 1.5 pixels full-width at half maximum and gradually reduced
to a width of 1 pixel after 800 iterations. To estimate onoise, the radial average of the pattern was
taken and used with Egs. (16) and (17). Each reconstruction is an average of 100 separate trials
with random initial phases and 2000 iterations per trial. For each trial the wave function in the
missing data region was intially set to the Fourier transform of the initial support as described
in Martin et al. [20]. By visual inspection, both methods have successfully reconstructed the
structure of the particle. The diameter of individual spheres in the reconstruction on the left is
80 nm and for the reconstruction on the right it is 140 nm. The phase retrieval transfer function
(PRTF) [2] shown in Fig. 3(d) shows a modest improvement for the noise tolerant HIO method
over the extent of the detector.

It should also be noted that the standard HIO method without noise-tolerance modifications
was not successful at reconstructing these particles. With the standard HIO, the various trials
produced reconstructions of different structures, and shrinkwrap did not converge to the same
support in each case. The difficulty of achieving any success with the standard HIO further
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Fig. 3. Experimental results. (a) The diffraction patterns for two samples of polystyrene
spheres. (b) The reconstructions using RAAR with shrinkwrap. (c) The reconstructions
using the noise-tolerant HIO. (d) The PRTF plots for each reconstruction.

highlights the gains that can be achieved by making the noise-tolerant modifications.

In principle, the noise-tolerant modification is not restricted to HIO, but could be applied to
other algorithms as well, including RAAR. In the pursuit of optimal phase-retrieval strategies,
it will be fruitful to develop noise-tolerant versions of other phase retrieval algorithms, like

RAAR, and compare their performance.

Filtering the diffraction pattern by applying a mask to the autocorrelation function is another
successful method of reducing the effects of noise [20]. When there is a missing data region,
it can be implemented in a two-pass approach, where an initial reconstruction is performed
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to low resolution to recover the missing data. Then the diffraction pattern is filtered with the
missing data region filled in, and a second reconstruction can be performed to higher resolution.
The noise-tolerant HIO is complementary to filtering because it can provide a better initial
reconstruction to more accurately recover the missing data. Since filtering cannot remove all
the effects of noise, noise-tolerant HIO can also be used in the second reconstruction after
filtering to reduce the effect of any residual errors.

5. Conclusion

We have shown how to improve the noise tolerance of iterative phase retrieval methods by al-
tering how they update the iterate outside the support. This was demonstrated by modifying the
HIO method and improvements in performance were observed in applications to both simu-
lated and experimentally-measured diffraction patterns. The modification is not limited to HIO
and can also be applied to other popular iterative phasing methods. The successful application
to single-shot diffraction patterns taken at LCLS is particularly encouraging, as it raises the
prospect of achieving higher resolutions with 2D FEL imaging by extracting more information
from noisy data at high scattering angles.
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