114 research outputs found

    Better Safe Than Sorry: An Adversarial Approach to Improve Social Bot Detection

    Full text link
    The arm race between spambots and spambot-detectors is made of several cycles (or generations): a new wave of spambots is created (and new spam is spread), new spambot filters are derived and old spambots mutate (or evolve) to new species. Recently, with the diffusion of the adversarial learning approach, a new practice is emerging: to manipulate on purpose target samples in order to make stronger detection models. Here, we manipulate generations of Twitter social bots, to obtain - and study - their possible future evolutions, with the aim of eventually deriving more effective detection techniques. In detail, we propose and experiment with a novel genetic algorithm for the synthesis of online accounts. The algorithm allows to create synthetic evolved versions of current state-of-the-art social bots. Results demonstrate that synthetic bots really escape current detection techniques. However, they give all the needed elements to improve such techniques, making possible a proactive approach for the design of social bot detection systems.Comment: This is the pre-final version of a paper accepted @ 11th ACM Conference on Web Science, June 30-July 3, 2019, Boston, U

    A Decade of Social Bot Detection

    Full text link
    On the morning of November 9th 2016, the world woke up to the shocking outcome of the US Presidential elections: Donald Trump was the 45th President of the United States of America. An unexpected event that still has tremendous consequences all over the world. Today, we know that a minority of social bots, automated social media accounts mimicking humans, played a central role in spreading divisive messages and disinformation, possibly contributing to Trump's victory. In the aftermath of the 2016 US elections, the world started to realize the gravity of widespread deception in social media. Following Trump's exploit, we witnessed to the emergence of a strident dissonance between the multitude of efforts for detecting and removing bots, and the increasing effects that these malicious actors seem to have on our societies. This paradox opens a burning question: What strategies should we enforce in order to stop this social bot pandemic? In these times, during the run-up to the 2020 US elections, the question appears as more crucial than ever. What stroke social, political and economic analysts after 2016, deception and automation, has been however a matter of study for computer scientists since at least 2010. In this work, we briefly survey the first decade of research in social bot detection. Via a longitudinal analysis, we discuss the main trends of research in the fight against bots, the major results that were achieved, and the factors that make this never-ending battle so challenging. Capitalizing on lessons learned from our extensive analysis, we suggest possible innovations that could give us the upper hand against deception and manipulation. Studying a decade of endeavours at social bot detection can also inform strategies for detecting and mitigating the effects of other, more recent, forms of online deception, such as strategic information operations and political trolls.Comment: Forthcoming in Communications of the AC

    Cashtag piggybacking: uncovering spam and bot activity in stock microblogs on Twitter

    Full text link
    Microblogs are increasingly exploited for predicting prices and traded volumes of stocks in financial markets. However, it has been demonstrated that much of the content shared in microblogging platforms is created and publicized by bots and spammers. Yet, the presence (or lack thereof) and the impact of fake stock microblogs has never systematically been investigated before. Here, we study 9M tweets related to stocks of the 5 main financial markets in the US. By comparing tweets with financial data from Google Finance, we highlight important characteristics of Twitter stock microblogs. More importantly, we uncover a malicious practice - referred to as cashtag piggybacking - perpetrated by coordinated groups of bots and likely aimed at promoting low-value stocks by exploiting the popularity of high-value ones. Among the findings of our study is that as much as 71% of the authors of suspicious financial tweets are classified as bots by a state-of-the-art spambot detection algorithm. Furthermore, 37% of them were suspended by Twitter a few months after our investigation. Our results call for the adoption of spam and bot detection techniques in all studies and applications that exploit user-generated content for predicting the stock market

    The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race

    Full text link
    Recent studies in social media spam and automation provide anecdotal argumentation of the rise of a new generation of spambots, so-called social spambots. Here, for the first time, we extensively study this novel phenomenon on Twitter and we provide quantitative evidence that a paradigm-shift exists in spambot design. First, we measure current Twitter's capabilities of detecting the new social spambots. Later, we assess the human performance in discriminating between genuine accounts, social spambots, and traditional spambots. Then, we benchmark several state-of-the-art techniques proposed by the academic literature. Results show that neither Twitter, nor humans, nor cutting-edge applications are currently capable of accurately detecting the new social spambots. Our results call for new approaches capable of turning the tide in the fight against this raising phenomenon. We conclude by reviewing the latest literature on spambots detection and we highlight an emerging common research trend based on the analysis of collective behaviors. Insights derived from both our extensive experimental campaign and survey shed light on the most promising directions of research and lay the foundations for the arms race against the novel social spambots. Finally, to foster research on this novel phenomenon, we make publicly available to the scientific community all the datasets used in this study.Comment: To appear in Proc. 26th WWW, 2017, Companion Volume (Web Science Track, Perth, Australia, 3-7 April, 2017

    DNA-inspired online behavioral modeling and its application to spambot detection

    Get PDF
    We propose a strikingly novel, simple, and effective approach to model online user behavior: we extract and analyze digital DNA sequences from user online actions and we use Twitter as a benchmark to test our proposal. We obtain an incisive and compact DNA-inspired characterization of user actions. Then, we apply standard DNA analysis techniques to discriminate between genuine and spambot accounts on Twitter. An experimental campaign supports our proposal, showing its effectiveness and viability. To the best of our knowledge, we are the first ones to identify and adapt DNA-inspired techniques to online user behavioral modeling. While Twitter spambot detection is a specific use case on a specific social media, our proposed methodology is platform and technology agnostic, hence paving the way for diverse behavioral characterization tasks

    Social Fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling

    Full text link
    Spambot detection in online social networks is a long-lasting challenge involving the study and design of detection techniques capable of efficiently identifying ever-evolving spammers. Recently, a new wave of social spambots has emerged, with advanced human-like characteristics that allow them to go undetected even by current state-of-the-art algorithms. In this paper, we show that efficient spambots detection can be achieved via an in-depth analysis of their collective behaviors exploiting the digital DNA technique for modeling the behaviors of social network users. Inspired by its biological counterpart, in the digital DNA representation the behavioral lifetime of a digital account is encoded in a sequence of characters. Then, we define a similarity measure for such digital DNA sequences. We build upon digital DNA and the similarity between groups of users to characterize both genuine accounts and spambots. Leveraging such characterization, we design the Social Fingerprinting technique, which is able to discriminate among spambots and genuine accounts in both a supervised and an unsupervised fashion. We finally evaluate the effectiveness of Social Fingerprinting and we compare it with three state-of-the-art detection algorithms. Among the peculiarities of our approach is the possibility to apply off-the-shelf DNA analysis techniques to study online users behaviors and to efficiently rely on a limited number of lightweight account characteristics

    Progettazione, sviluppo e valutazione di un'architettura per applicazioni di Early Warning in un contesto di Social Sensing

    Get PDF
    Progettazione, sviluppo e valutazione di un'architettura per applicazioni di Early Warning in un contesto di Social Sensin

    Fame for sale: efficient detection of fake Twitter followers

    Get PDF
    Fake followers\textit{Fake followers} are those Twitter accounts specifically created to inflate the number of followers of a target account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like popularity and influence in the Twittersphere - hence impacting on economy, politics, and society. In this paper, we contribute along different dimensions. First, we review some of the most relevant existing features and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for spam detection provide good results. Building on the most promising features, we revise the classifiers both in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The final result is a novel Class A\textit{Class A} classifier, general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global sensitivity of each of the features employed by the classifier. The findings reported in this paper, other than being supported by a thorough experimental methodology and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter followers

    Social Media for the Common Good: the case of EARS

    Get PDF
    Natural disasters such as earthquakes, tornadoes and floods, are just some of the devastating events that may have catastrophic consequences on wide geographical areas. A quick and targeted response to emergencies greatly contributes in mitigating the losses. In recent years we have witnessed to many situations in which crowds of volunteer citizens have helped emergency responders via the use of widespread social media. Here we argue that technology can help in supporting the population, as well as the decision makers, by introducing tools that enhance the collective awareness level, providing quick yet accurate insights into the unfolding emergency. In this short paper we introduce the EARS system, a social media-based system that supports decision makers during earthquake emergencies in Italy. We discuss the implications and the responsibility related to the usage of such systems by the decision makers. Also, we discuss on how publicly opening systems like EARS to the population might change the problem approach and we introduce relevant opportunities and issues that this solution would imply.

    A Linguistically-driven Approach to Cross-Event Damage Assessment of Natural Disasters from Social Media Messages

    Get PDF
    This work focuses on the analysis of Italian social media messages for disaster management and aims at the detection of messages carrying critical information for the damage assessment task. A main novelty of this study consists in the focus on out-domain and cross-event damage detection, and on the investigation of the most relevant tweet-derived features for these tasks. We devised different experiments by resorting to a wide set of linguistic features qualifying the lexical and grammatical structure of a text as well as ad-hoc features specifically implemented for this task. We investigated the most effective features that allow to achieve the best results. A further result of this study is the construction of the first manually annotated Italian corpus of social media messages for damage assessment
    • …
    corecore