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Fame for sale: efficient detection of fake Twitter followers
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Abstract

Fake followers are those Twitter accounts specifically created to inflate the number of followers of a target

account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like

popularity and influence in the Twittersphere—hence impacting on economy, politics, and society. In this

paper, we contribute along different dimensions. First, we review some of the most relevant existing features

and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create

a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to

the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers

built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide

unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for

spam detection provide good results. Building on the most promising features, we revise the classifiers both

in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The

final result is a novel Class A classifier, general enough to thwart overfitting, lightweight thanks to the usage

of the less costly features, and still able to correctly classify more than 95% of the accounts of the original

training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global

sensitivity of each of the features employed by the classifier.

The findings reported in this paper, other than being supported by a thorough experimental methodology

and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter

followers.
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1. Introduction

Originally started as a personal microblogging site, Twitter has been transformed by common use to an

information publishing venue. Statistics reported about a billion of Twitter subscribers, with 302 million

monthly active users2. Twitter annual advertising revenue in 2014 has been estimated to around $480

million3. Popular public characters, such as actors and singers, as well as traditional mass media (radio,

TV, and newspapers) use Twitter as a new media channel.

Such a versatility and spread of use have made Twitter the ideal arena for proliferation of anomalous

accounts, that behave in unconventional ways. Academia has mostly focused its attention on spammers,

those accounts actively putting their efforts in spreading malware, sending spam, and advertising activities

of doubtful legality [1, 2, 3, 4]. To enhance their effectiveness, these malicious accounts are often armed with

automated twitting programs, as stealthy as to mimic real users, known as bots. In the recent past, media

have started reporting that the accounts of politicians, celebrities, and popular brands featured a suspicious

inflation of followers4. So-called fake followers correspond to Twitter accounts specifically exploited to

increase the number of followers of a target account. As an example, during the 2012 US election campaign,

the Twitter account of challenger Romney experienced a sudden jump in the number of followers. The

great majority of them has been later claimed to be fake5. Similarly, before the last general Italian elections

(February 2013), online blogs and newspapers had reported statistical data over a supposed percentage of

fake followers of major candidates6. At a first glance, acquiring fake followers could seem a practice limited

to foster one’s vanity—a maybe questionable, but harmless practice. However, artificially inflating the

number of followers can also be finalized to make an account more trustworthy and influential, in order to

stand from the crowd and to attract other genuine followers [5]. Recently, banks and financial institutions in

U.S. have started to analyze Twitter and Facebook accounts of loan applicants, before actually granting the

loan7. Thus, to have a “popular” profile can definitely help to augment the creditworthiness of the applicant.

Similarly, if the practice of buying fake followers is adopted by malicious accounts, as spammers, it can act

as a way to post more authoritative messages and launch more effective advertising campaigns [6]. Fake

followers detection seems to be an easy task for many bloggers, that suggest their “golden rules” and provide

a series of criteria to be used as red flags to classify a Twitter account behavior. However, such rules are

2C. Smith, By The Numbers: 150+ Amazing Twitter Statistics, http://goo.gl/o1lNi8 - June 2015. Last checked: July 23,
2015.

3Statistic Brain, Twitter statistics, http://goo.gl/XEXB1 - March 2015. Last checked: July 23, 2015.
4Corriere Della Sera (online ed.), Academic Claims 54% of Grillo’s Twitter Followers are Bogus, http://goo.gl/qi7Hq - July

2012. Last checked: July 23, 2015.
5New York Times (online ed.), Buying Their Way to Twitter Fame, http://goo.gl/VLrVK, - August 2012. Last checked:

July 23, 2015.
6The Telegraph (online ed.), Human or bot? Doubts over Italian comic Beppe Grillo’s Twitter followers,

http://goo.gl/2yEgT - July 2012. Last checked: July 23, 2015.
7Le Monde (online ed.), Dis-moi combien d’amis tu as sur Facebook, je te dirai si ta banque va t’accorder un prêt,

http://goo.gl/zN3PJX - Sept. 2013. Last checked: July 23, 2015.
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usually paired neither with analytic algorithms to aggregate them, nor with validation mechanisms. As for

Academia, researchers have focused mainly on spam and bot detection, with brilliant results characterizing

Twitter accounts based on their (non-)human features, mainly by means of machine-learning classifiers

trained over manually annotated sets of accounts.

To the best of our knowledge, however, despite fake followers constitute a widespread phenomenon with

both economical and social impacts, in the literature the topic has not been deeply investigated yet.

Contributions

The goal of this work is to shed light on the phenomenon of fake Twitter followers, aiming at overcoming

current limitations in their characterization and detection. In particular, we provide the following contribu-

tions. First, we build a baseline dataset of Twitter accounts where humans and fake followers are known a

priori. Second, we test known methodologies for bot and spam detection on our baseline dataset. In partic-

ular, we test the Twitter accounts in our reference set against algorithms based on: (i) single classification

rules proposed by bloggers, and (ii) feature sets proposed in the literature for detecting spammers. The

results of the analysis suggest that fake followers detection deserves specialized mechanisms: specifically,

algorithms based on classification rules do not succeed in detecting the fake followers in our baseline dataset.

Instead, classifiers based on features sets for spambot detection work quite well also for fake followers de-

tection. Third, we classify all the investigated rules and features based on the cost required for gathering

the data needed to compute them. Building on theoretical calculations and empirical evaluations, we show

how the best performing features are also the most costly ones. The novel results of our analysis show that

data acquisition cost often poses a serious limitation to the practical applicability of such features. Finally,

building on the crawling cost analysis, we design and implement lightweight classifiers that make use of the

less costly features, while still being able to correctly classify more than 95% of the accounts of our training

dataset. In addition, we also validated the detection performances of our classifiers over two other sets of

human and fake follower accounts, disjoint from the original training dataset.

Road map

The remainder of this paper is structured as follows. Section 2 considers and compares related work

in the area of Twitter spam and bot detection. Section 3 describes our baseline dataset. In Section 4, we

evaluated a set of criteria for fake Twitter followers detection promoted by Social Media analysts using our

baseline dataset. In Section 5, we examine features used in previous works for spam detection of Twitter

accounts. In Section 6 we compute the cost for extracting the features our classifiers are based on. A

lightweight and efficient classifier is also provided, attaining a good balance between fake followers detection

capability and crawling cost. Finally, Section 7 concludes the paper.
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2. Related Work

Quoting from [7], “A fake Twitter account is considered as one form of deception (i.e., deception in both

the content and the personal information of the profiles as well as deception in having the profile follow

others not because of personal interest but because they get paid to do so).” The second characterization

for deception is exactly the one we deal with in our paper. We specifically consider fake followers as those

Twitter accounts appropriately created and sold to customers, which aim at magnifying their influence and

engagement to the eyes of the world, with the illusion of a big number of followers.

So defined fake followers are only an example of anomalous accounts which are spreading over Twitter.

Anomalies have been indeed identified in the literature as either spammers (i.e. accounts that advertise

unsolicited and often harmful content, containing links to malicious pages [8]), or bots (i.e., computer

programs that control social accounts, as stealthy as to mimic real users [9]), or cyborgs (i.e., accounts that

interweave characteristics of both manual and automated behavior [10]). Finally, there are fake followers,

accounts massively created to follow a target account and that can be bought from online accounts markets.

2.1. Grey literature and Online Blogs

Before covering the academic literature, we briefly report on online documentation that presents a series

of intuitive fake follower detection criteria, though not proved to be effective in a scientific way. The reason

why we cite this work is twofold: on the one hand, online articles and posts testify the quest for a correct

discrimination between genuine and fake Twitter followers; on the other hand, we aim at assessing in a

scientific manner whether such criteria could actually be employed for fake followers detection.

As an example, a well-known blogger in [11] indicates as possible bots-like distinctive signals the fact

that bots accounts: 1) have usually a huge amount of following and a small amount of followers; 2) tweet

the same thing to everybody; and, 3) play the follow/unfollow game, i.e. they follow and then unfollow an

account usually within 24 hours. Criteria advertised by online blogs are mainly based on common sense and

the authors usually do not even suggest how to validate them.

A series of reports published by the firm Digital evaluations [12] have attracted the attention of Italian

and European newspapers and magazines, raising doubts on the Twitter popularity of politicians and leading

international companies. A number of criteria, inspired by common sense and denoting human behavior, are

listed in the reports and used to evaluate a sample of the followers of selected accounts. For each criterion

satisfied by a follower, a human score is assigned. For each not fulfilled criterion, either a bot or neutral

score is assigned. According to the total score, Twitter followers are classified either as humans, as bots or

as neutral (in the latter case, there is not enough information to assess their nature), providing a quality

score of the effective influence of the followed account. The results in [12], however, lack a validation phase.

Finally, some companies specialized in social media analysis offer online services to estimate how much

a Twitter account is genuine in terms of its followers [13, 14, 15]. However, the criteria used for the
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analysis are not publicly disclosed and just partially deductible from information available on their web

sites. Moreover, as demonstrated in our previous work [16], these analyses are affected by several biases like

small and statistically unsound sampling strategies.

2.2. Academic literature

In recent years, spam detection on Twitter has been the matter of many investigations, approaching the

issue from several points of view. As an example, a branch of research focused on the textual content of

tweets [4, 3, 17], studying the redirection of embedded URLs in tweets [18], and classifying the URLs landing

pages [19]. Other works tackled the problem of deception on Twitter via epistemology. For instance, in [20]

authors evaluate 4 epistemological features for the task of deception detection: authority, plausibility and

support, independent corroboration, and presentation.

Work in [21] overcomes the limitation of not being able to correctly label those tweets without URLs

as spam tweets, by proposing a composite tool, able to match incoming tweets with underlying templates

commonly used by spammers. Instead of considering the content of tweets, work in [7] tries to classify if an

account can be trusted or not based on possibly inconsistent information originating from the profile of the

account only.

A series of works investigate spammers on microblogging platforms through a multi-feature approach,

including features on the profile, the behavior, and the timeline of an account. Within this research line,

we cite here [8], [2], and [22]. The work in [8] presents an analysis on how spammers operate on Facebook,

Twitter, and MySpace, reporting that the suspicious accounts shared some common traits on specific fea-

tures. Those served as input to a machine learning-based classifier [23] leading to the detection of more

than 15,000 spam profiles, that Twitter promptly deleted. In [2], the authors propose a taxonomy of cri-

teria for detecting Twitter spammers. A series of experiments show how the newly designed criteria have

higher detection rates, when compared to the existing ones. In [22], the authors leverage a combination of

behavioral features (such as tweeting and retweeting activities), network features (such as the number of

an account’s followers and friends), and content-based features to develop a hybrid mathematical model for

spammer detection in Weibo, the Chinese microblogging site resembling Twitter.

The authors of [10] classify Twitter accounts in three classes: humans, bot, and cyborgs. The latter class

represents either bot-assisted humans or human-assisted bots. The authors used a decision maker based on

three specialized components that considered the content and timing of tweets and some account properties.

The algorithms proposed in [24, 4] aim at spotting groups of automated malicious Twitter accounts

as quickly as possible, to avoid the accounts’ owners from taking advantage of them.Thus, authors apply

clustering algorithms to group accounts created within a short period of time, considering, among others,

name- and content-based features.

In [25], the authors list several criteria to detect clients and victims of Twitter account markets, that are
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online services offering their subscribers to provide followers in exchange for a fee, and to spread promotional

tweets on their behalf. In another work [26], the same research team provides more details about the

account markets, analyzing additional properties and characteristics of their customers (e.g., the dynamics of

followers and friends and the ability of generating engagement), and providing a classifier for the detection of

both markets and market customers. The authors of [27] monitor prices, availability, and fraud perpetrated

by a set of merchants of Twitter accounts over the course of a ten-months period. Such a research is a

spotlight on techniques and methodologies that accounts markets exploit to create and register fraudulent

accounts, from CAPTCHA solving services, to deceitful email credentials and a diverse pool of IP addresses

to evade blacklisting. In collaboration with Twitter itself, the authors developed a classifier to detect such

fraudulent accounts, which were consequently suspended.

It is worth noting that the cited selection of academic works is not exhaustive. However, it considers a

huge collection of criteria, which we further leverage for our approach to fake Twitter followers detection.

There are other works for spam detection, not detailed here, like [1, 28, 29, 30, 31, 32], which base their

results on subsets, or on slightly modified versions, of criteria considered by the selected set of related work.

2.3. Differences and similarities with our approach

The goal of our research is the automatic detection of those Twitter accounts specifically created to

inflate the number of followers of some target account (so called fake Twitter followers). A priori, both

spammers, bots, and genuine users’ accounts could fall in the macro-category of fake followers, and specific

features already proved effective in the literature for spotting spammers and bots could work also in the case

of fake followers. It was indeed this observation that initially drove the authors of this paper towards the

direction of testing rules and features from past works on a reference dataset of genuine accounts and fake

followers. This contributed to prune those rules and features that behaved worst in detecting fake followers,

and leave the ones that well behave.

From a technical point of view, in our experiments we rely on machine learning-based classifiers exploiting

features of 1) profile, 2) activity, and 3) relationships of the accounts, similarly to [8, 2]. Instead, we do not

rely on features inherent to specific contents of tweets, such as the presence of URLs and the semantics of

the text [17, 19]. We move beyond the mere application of already tested features to a new dataset, since

we revise our classifiers to reduce overfitting and cost for data gathering, as illustrated in Sections 5 and 6.

Finally, similarly to [26], we bought fake Twitter followers from different markets available on the Web.

We conducted such an exercise independently from [26] and, moreover, goals of the two works are quite

different, ours focusing on accounts sold by these markets, while the other targeting their customers. As

for the genuine part of our baseline dataset, we recruit accounts of people that have voluntarily adhered to

our campaign, and leverage a dataset of annotated accounts, belonging to people active on Twitter within

a particular period of time on a specific domain, and whose authenticity has been verified. However, willing
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to test our classifiers over a representative sample of the entire Twitter population, we also approach the

construction of a test set by randomly picking: 1) a sample of Barack Obama’s followers, and 2) a sample

of the Twitter population.

3. Baseline datasets

In this section we present the datasets of Twitter accounts used to conduct our empirical study throughout

the paper. We detail how we collected each of them and how we verified if they were genuine humans or

fake followers. Despite the final size of the baseline dataset, to perform our research, we altogether crawled

9 millions of Twitter accounts and about 3 millions of tweets. To foster investigation on the novel issue of

fake Twitter followers, our baseline dataset has been made publicly available for research purposes [33].

3.1. The Fake Project

The Fake Project started its activities on December 12, 2012, with the creation of the Twitter account

@TheFakeProject. Its profile reports the following motto: “Follow me only if you are NOT a fake” and

explains that the initiative is linked with a research project owned by researchers at IIT-CNR, in Pisa-Italy.

In a first phase, the owners contacted further researchers and journalists to advertise the initiative and also

foreign journalists and bloggers supported the initiative in their countries. In a twelve days period (Dec

12-24, 2012), the account has been followed by 574 followers. Through the Twitter APIs, we crawled a series

of public information about these followers together with that of their followers and followings. For this

dataset, we crawled the 574 accounts, leading to the collection of 616,193 tweets and 971,649 relationships

(namely, linked Twitter accounts).

All those followers voluntarily joined the project. To include them in our reference set of humans, we also

launched a verification phase. Each follower received a direct message on Twitter from @TheFakeProject,

containing an URL to a CAPTCHA, unique for each follower. We consider as “certified humans” all the

469 accounts out of the 574 followers that successfully completed the CAPTCHA. In the remainder of this

section this dataset is referred to as TFP .

3.2. #elezioni2013 dataset

The #elezioni2013 dataset, henceforth E13 , was born to support a research initiative for a sociological

study carried out in collaboration with the University of Perugia and the Sapienza University of Rome. The

study focused on the strategic changes in the Italian political panorama for the 3-year period 2013-2015.

Researchers identified 84,033 unique Twitter accounts that used the hashtag #elezioni2013 in their tweets,

during the period between January 9 and February 28, 2013. Identification of these accounts has been based

on specific keyword-driven queries on the username and biography fields of the accounts’ profiles. Keywords

include blogger, journalist, social media strategist/analyst, and congressperson. Specific names of political

parties have been also searched. In conclusion, all the accounts belonging to politicians and candidates,
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parties, journalists, bloggers, specific associations and groups, and whoever somehow was officially involved

in politics, have been discarded. The remaining accounts (about 40k) have been classified as citizens. This

last set has been sampled (with confidence level 95% and confidence interval 2.5), leading to a final set of

1488 accounts, that have been subject to a manual verification to determine the nature of their profiles

and tweets. The manual verification process has been carried out by two sociologists from the University

of Perugia, Italy. It involved the analysis of profile pictures, biographies, and timeline of the accounts

under investigation. Accounts not having a biography or a profile picture have been discarded. URLs in

biographies have also been manually checked to allow for a deeper analysis of the subject. Only accounts

labeled as humans by both the sociologists have been included in the E13 dataset. Overall, the manual

verification phase lasted roughly two months. As a result, 1481 accounts became part of dataset E13 .

3.3. Baseline dataset of human accounts

The above introduced datasets form our final set, labeled HUM , of 1950 verified human accounts. It

is worth noting how the two subsets differ from each other. The TFP set consists of accounts that have

been recruited on a volunteer base: people involved in the initiative aimed to be part of an academic study

for discovering fake followers on Twitter, and are a mixture of researchers and social media experts and

journalists, mostly from Italy, but also from US and other European countries. The E13 set consists of

particularly active Italian Twitter users, with different professional background and belonging to diverse

social classes, sharing a common interest for politics, but that do not belong to the following categories:

politicians, parties, journalists, bloggers.

3.4. Baseline dataset of fake followers

In April, 2013, we bought 3000 fake accounts from three different Twitter online markets. In particular,

we bought 1000 fake accounts from http:// fastfollowerz.com , 1000 from http:// intertwitter.com , and 1000

fake accounts from http:// twittertechnology.com , at a price of $19, $14 and $13 respectively. Surprisingly,

fastfollowerz and intertwitter gave us a few more accounts than what we paid for, respectively 1169 and

1337 instead of 1000. We crawled all these accounts to build a fastfollowerz dataset, labeled FSF , and

an intertwitter dataset labeled INT . Instead, we were unable to crawl all the 1000 fake followers bought

from twittertechnology since 155 of them got suspended almost immediately. The remaining 845 accounts

constitute the twittertechnology dataset, which is labeled TWT .

We acknowledge that our fake followers dataset is just illustrative, and not exhaustive, of all the possible

existing sets of fake followers. However, it is worth noting that we found the Twitter accounts marketplaces

by simply Web searching them on the most common search engines. Thus, we can argue that our dataset

represents what was easily possible to find on the Web at the time of searching.
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relationships

dataset accounts tweets followers friends total

TFP (@TheFakeProject) 469 563,693 258,494 241,710 500,204
E13 (#elezioni2013) 1481 2,068,037 1,526,944 667,225 2,194,169
FSF (fastfollowerz) 1169 22,910 11,893 253,026 264,919
INT (intertwitter) 1337 58,925 23,173 517,485 540,658
TWT (twittertechnology) 845 114,192 28,588 729,839 758,427

HUM (human dataset) 1950 2,631,730 1,785,438 908,935 2,694,373
FAK (fake dataset) 1950 118,327 34,553 879,580 914,133

BAS (baseline dataset: HUM ∪ FAK ) 3900 2,750,057 1,819,991 1,788,515 3,608,506

Table 1: Statistics about total collected data [33].

3.5. Baseline dataset of fake followers and human accounts

The final baseline dataset exploited in our experiments is composed of both fake and human profiles. In

the following, we briefly discuss the distribution between fake and human accounts that has been chosen for

this dataset. Many machine-learning techniques are affected by the imbalance of the natural distributions

of the minority and majority classes. This is why, for example, works in the literature have studied how the

decision tree-based techniques perform when varying the distribution of the training set. In particular, Weiss

and Provost, in [34], considered the performances of decision-tree based classifiers to predict the samples of

26 different datasets, with different distributions between the minority and majority classes. The conclusions

of their investigation have shown that the metric used to evaluate the performance of the different classifiers

changes the optimal distribution of the classes for the training set. For example, after their empirical

analysis, using accuracy as evaluation metric, 9 out of the 26 datasets have the optimal distribution very

different from the natural one, while, when using the AUC as evaluation metric, this number grows to 14

out of the 26. Moreover, the optimal distribution has an oversampling of the minority class (there are also

cases when the best classifier is obtained with an oversampling up to 90% of the minority class samples).

Here, we face another fundamental issue: we do not precisely know the real (natural) distribution of fake

followers and human accounts. In 2013, the Twitter staff conjectured that the number of “false or spam

accounts should represent less than 5% of our MAUs” (where MAUs refer to monthly active users) [35].

However, MAUs can be assimilated neither to a random sample of Twitter accounts nor to the followers of

a given account. Moreover, if an account has bought fake followers, then its distribution of fake followers

and human followers can vary dramatically from the natural distribution that one can find, either among

MAUs, or among all the Twitter accounts in the Twittersphere. In conclusion, the estimation of 5% as

false or spam accounts, in the whole Twitter, can not be directly extended to the fake followers of a given

account.

Although Twitter has never disclosed the total number of registered users, unofficial sources claim that

the Twitter accounts created up to date are many more than the MAUs. This is why we made a conservative

assumption, considering a balanced distribution of fake followers and human followers as our baseline dataset.
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To validate this assumption, we performed the experiments in [34] to our dataset. We progressively varied the

class distribution of fake followers and human followers in the dataset, from 5%–95% to 95%–5% (respectively

100 humans–1900 fake followers, 1900 humans–100 fake followers), and used the obtained dataset to train

J48 classifiers, considering their performances with cross-validation. The trained classifiers obtained their

best results on a balanced distribution of humans and fake followers. To obtain a balanced dataset, we

randomly undersampled the total set of fake accounts (i.e., 3351) to match the size of the HUM dataset of

verified human accounts. Thus, we built a baseline dataset of 1950 fake followers, labeled FAK . The final

baseline dataset for this work includes both the HUM dataset and the FAK dataset for a total of 3900 Twitter

accounts. This balanced dataset is labeled BAS in the remainder of the paper and has been exploited for

all the experiments described in this work (where not otherwise specified). Table 1 shows the number of

accounts, tweets and relationships contained in the datasets described in this section.

4. Fake detection with algorithms based on classification rules

In this section, we detail three procedures, originally proposed by bloggers and social media analysts,

explicitly conceived for fake followers and bot accounts detection. These proposals were introduced in [12,

11, 14]. The work we focus on in this section is not directly attributable to academic work. However, it

is an example of the spreading interest on the phenomenon of fake Twitter followers by Media and Social

Marketing companies. Although we do not expect these proposals to satisfactorily perform for the complex

task of fake followers detection, we believe a thorough analysis of the proposed criteria could still provide

some useful insights. Coincidentally, all the procedures are proposed as algorithms relying on a list of rules,

or criteria: each account to be classified is checked against all the rules and the outputs of the checks must

be combined together in order to obtain the final classification. Unfortunately in many cases, details on how

to combine the criteria to obtain the final classification of an account is not publicly available. Details on

how aggregation has been performed are provided in [12] only. Driven by the provided details, we implement

the full algorithm described in [12] and we present its detection performances in Section 4.5. In addition, for

each of the procedures, we report the criteria as indicated by the original sources and we further specify how

we have implemented them into rules suitable to be applied over our datasets. We also detail the reasons

for our implementation choices.

In this section, we mainly focus on the application of each single rule over our dataset to assess its

strength (or weakness) in discriminating fake followers. In Section 6, we combine all the rules together with

the features analyzed in Section 5, to assess their collective classification power. This is because a single

rule – or feature – alone may not perform well in classifying fake and human accounts, but it may improve

the detection if used in combination with other ones. Indeed, it is worth noting that some of the criteria

analyzed in this section have been actually exploited by the classifiers built in Section 6.
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1. the profile contains a name; 12. it has used a hashtag in at least one tweet;
2. the profile contains an image; 13. it has logged into Twitter using an iPhone;
3. the profile contains a physical address; 14. it has logged into Twitter using an Android device;
4. the profile contains a biography; 15. it is connected with Foursquare;
5. the account has at least 30 followers; 16. it is connected with Instagram;
6. it has been inserted in a list by other Twitter users; 17. it has logged into twitter.com website;
7. it has written at least 50 tweets; 18. it has written the userID of another user in at least one

tweet, that is it posted a @reply or a mention;
8. the account has been geo-localized; 19. (2*number followers) ≥ (number of friends);
9. the profile contains a URL; 20. it publishes content which does not just contain URLs;
10. it has been included in another user’s favorites; 21. at least one of its tweets has been retwitted by other

accounts (worth 2 points);
11. it writes tweets that have punctuation; 22. it has logged into Twitter through different clients (worth

3 points).

Table 2: Camisani-Calzolari rule set.

Throughout the sequel of the paper we use the term “friends” to denote the users followed by an account

(i.e., if A follows B, B is a friend of A).

4.1. Followers of political candidates

Camisani-Calzolari [12] carried out a series of tests over samples of Twitter followers of Romney and

Obama, for the last US presidential elections, as well as for popular Italian politicians. In [12] it is detailed an

algorithm to evaluate an account based on some of its public features. The cited algorithm has enough details

to be reproducible: it assigns human/active and bot/inactive scores and classifies an account considering

the gap between the sum of the two scores. In particular, the algorithm assigns to the examined accounts 1

(or more, where specified) human point for each of the criteria in Table 2. Moreover, the account receives

2 bot points if it only uses APIs. Finally, for each criterion that fails to be verified, the account receives 1

bot point, with the exception of criteria 8, 13, 14, 15, 16 and 17: in this cases, no bot points are assigned.

To verify those rules, we referred to the source metadata of the tweets, that contains a different value

representing the platform used to post a tweet. In particular, concerning the above rules, we considered

the source metadata with the values iphone, android, foursquare, instagram and web, respectively, and we

assigned 1 human point for each of the values found at least once within the collected tweets of the account.

For the criterion 21, 2 bot points are assigned if no tweets of the account have been retweeted by other users.

Considering rule 8, geo-localization is related to tweets. Consequently, we set this rule as satisfied when at

least one tweet of the account has been geo-localized. For the rule 11, punctuation has been searched in

both the profile biography and in its timeline.

4.2. Stateofsearch.com

Among the several bloggers that propose their golden rules to identify suspicious Twitter accounts, we

consider the “7 signals to look out for recognizing Twitter bots”, according to the founder of the social media

website stateofsearch.com [11]. The “7 signals to look out for” to recognize Twitter bots are listed in Table 3.
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1. the biography of the profile clearly specifies that it
is a bot account;

5. accounts that tweet from API are suspicious;

2. the friends
followers

ratio is in the order of 100:1; 6. the response time (follow → reply) to tweets of other ac-
counts is within milliseconds;

3. the account tweets the same sentence to many other
accounts;

7. the account tends to follow → unfollow other accounts
within a temporal arc of 24 hours.

4. different accounts with duplicate profile pictures are
suspicious;

Table 3: Stateofsearch.com rule set.

The rule 3 has been implemented considering the tweet as a single unit. We consider the last 20 tweets

of each timeline. For the rule 4, we consider the existence of a duplicate profile picture when at least 3

accounts within the dataset have the same profile picture. For the rule 5, we consider as tweets posted from

API all those tweets not being posted from the website twitter.com. For rules 6 and 7, when looking for an

account’s friends or followers list, Twitter only gives information about the current list, with no details about

past friends or followers. Moreover, Twitter does not disclose any temporal data related to the moment

a user stared following, or got followed by, another user. This means that the only way to check a user’s

follow/unfollow behavior (rule 7) is to continuously monitor full friends and followers complete lists. The

same applies with respect to the measurement of the delay experienced when a user follows (and replies to)

other users (rule 6). As further detailed in Section 6, the Twitter rate limits in the use of the APIs makes it

practically infeasible to monitor friends and followers lists of even a small group of users. Therefore, we did

not apply rules 6 and 7 to our datasets, since that would require to continually monitor those accounts. This

also means that those rules cannot be used to support an automatic detection process, since they require

an interactive process to be evaluated.

4.3. Socialbakers’ FakeFollowerCheck

Several companies provide online tools to classify Twitter followers based on their fakeness degree. Here,

we consider the “FakeFollowerCheck tool”, by Socialbakers [14]. While the company website provides eight

criteria to evaluate the fakeness degree of the followers of a certain account, it omits details on how to

combine such criteria to classify the accounts. We contacted their customer service, but we were answered

that “how the respective criteria are measured is rather an internal information”. The FakeFollowerCheck

tool analyzes the followers of an account and considers them likely fake when the criteria listed in Table 4

are satisfied.

For the rule 2, we consider as spam phrases expressions like “diet” or “make money” or “work from

home” (both English and Italian translations), as suggested by the website of Socialbakers.

4.4. Evaluation methodology

All the criteria detailed above have been applied to the 2 verified human accounts datasets (TFP and

E13 ) as well as to all the 3351 fake followers accounts bought from the Twitter account markets (FSF ∪
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1. the ratio friends
followers

of the account under investigation
is 50:1, or more;

5. more than 90% of the account tweets are links;

2. more than 30% of all the tweets of the account
use spam phrases, such as “diet”, “make money” and
“work from home”;

6. the account has never tweeted;

3. the same tweets are repeated more than three times,
even when posted to different accounts;

7. the account is more than two months old and still has a
default profile image;

4. more than 90% of the account tweets are retweets; 8. the user did not fill in neither bio nor location and, at the
same time, he/she is following more than 100 accounts.

Table 4: Socialbakers rule set.

INT ∪ TWT ), as described in Section 3.

We conducted one experiment for each rule, considering two classes of accounts, the fake followers and

the human ones. To summarize the outcomes of each experiment, we considered some evaluation metrics

based on four standard indicators, namely:

• True Positive (TP): the number of those fake followers recognized by the rule as fake followers;

• True Negative (TN): the number of those human followers recognized by the rule as human followers;

• False Positive (FP): the number of those human followers recognized by the rule as fake followers;

• False Negative (FN): the number of those fake followers recognized by the rule as human followers.

The meaning of each indicator is graphically highlighted by the matrix in Table 5 (called the confusion

matrix ), where each column represents the instances in the predicted class, while each row represents the

instances in the actual class [36]: In order to evaluate the application of each single rule to the accounts in

predicted class

actual class human fake

human TN FP
fake FN TP

Table 5: Confusion matrix.

the baseline dataset, we consider the following standard evaluation metrics:

• Accuracy: the proportion of predicted true results (both true positives and true negatives) in the

population, that is TP+TN
TP+TN+FP+FN ;

• Precision: the proportion of predicted positive cases that are indeed real positive, that is TP
TP+FP ;

• Recall (or also Sensitivity): the proportion of real positive cases that are indeed predicted positive,

that is TP
TP+FN ;

• F-Measure: the harmonic mean of precision and recall, namely 2·precision·recall
precision+recall ;
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• Matthew Correlation Coefficient (MCC from now on) [37]: the estimator of the correlation between

the predicted class and the real class of the samples, defined as:

TP · TN - FP · FN
√

(TP+FN)(TP+FP)(TN+FP)(TN+FN)

Each of the above measures captures a different aspect of the prediction quality of the samples that belong

to the relevant class (the fake followers, in our dataset). Accuracy measures how many samples are correctly

identified in both of the classes, but it does not express if the relevant class is better recognized than the

other one. Moreover, there are situations where some predictive models perform better than others, even

having a lower accuracy [38]. A high Precision indicates that many of the samples identified as relevant

are correctly recognized, but it does not give any information about the relevant samples which have not

been identified. This information is provided by the Recall metric, that expresses how many samples, in the

whole set of relevant samples, have been correctly recognized: a low recall means that many relevant samples

are left unidentified. F-Measure and MCC try to convey in one single value the quality of a prediction,

combining the other metrics. Furthermore, MCC is considered the unbiased version of the F-Measure, since

it uses all the four elements of the confusion matrix [38]. An MCC value close to 1 means that the prediction

is really accurate; a value close to 0 means that the prediction is no better than random guess, and a value

close to -1 means that the prediction is heavily in disagreement with the real class. Then, we consider as best

rules those criteria whose application gives MCC ≥ 0.6, since such rules have the strongest correlation with

the typology of the accounts. For completeness, when available, we also report the area-under-the-curve

metric (AUC ), that is the area under the Receiver Operating Characteristic (ROC) curve [39]. The latter

is the curve that depicts the performance of a classifier considering the percentage of true positive samples

compared with the percentage of false positive samples. The AUC is used to summarize ROC curves in a

single value: the more the area approaches to 1, the more capable is the classifier.

Finally, we also report the Information Gain (I gain) and the Pearson Correlation Coefficient (Pcc).

While the Pearson correlation coefficient can detect linear dependencies between a feature and the tar-

get class, the information gain considers a more general dependence, leveraging probability densities (or

frequencies, in case of discrete variables). More precisely, the information gain is a measure about the in-

formativeness of a feature with respect to the predicting class and it is typically adopted to train machine

learning classifiers. It can be informally defined as the expected reduction in entropy caused by the knowl-

edge of the value of a given attribute [40]. We compute two information gains: I gain about the outcome of

the rule and I gain* about the attribute used by the rule. For I gain, a rule based on attribute A can only

assume the values 0 (not satisfied) and 1 (satisfied), while for I gain*, the attribute A can assume much

heterogeneous values. For example, when evaluating the information gain of the rule “followers ≥ 30”, a

sample with 234 followers contributes with value 1 when we compute I gain, and with value 234 when we

compute I gain∗. The Pearson correlation coefficient, instead, is a measure of the strength of the linear rela-
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outcome

dataset real humans humans bots neutral

TFP (@TheFakeProject) 469 456 3 10
E13 (#elezioni2013) 1481 1480 0 1
FSF ∪ INT ∪ TWT (100% fake foll.) 0 2889 185 277

Table 6: Camisani-Calzolari algorithm prediction outcome.

evaluation metrics

algorithm accuracy precision recall F-M. MCC

CC algorithm♯ 0.548 0.974 0.062 0.116 0.175

Table 7: Evaluation of Camisani-Calzolari algorithm (CC algorithm) [12]. Training set: BAS (1950 humans and 1950 fake
followers). (♯): the CC algorithm classified 163 accounts as neutral.

tionship between two random variables X and Y [41, 42]. Again , we compute Pcc, considering the outcome

of the satisfaction of the rule (namely: true=1 or false=0) and Pcc*, based on the value assumed by the

attribute used to evaluate the rule. Our experiments in the following sections will show that, generally, a

rule and the corresponding attribute assume very different values for the information gain and the Pearson

correlation coefficient.

4.5. Evaluation of Camisani-Calzolari algorithm

The detection algorithm in [12] aggregates the 22 criteria for identifying human and bot behavior,

introduced in Section 4.1. The algorithm evaluates every single rule on the account under investigation, and

it assigns a positive human score or a negative bot score, according to the output of the rule application.

The final outcome depends on the global score obtained by the account: if the result is a score greater than

0, then the account is marked as human; if it is between 0 and -4, it is marked as neutral ; otherwise, it is

marked as bot.

Table 6 details the results of running the algorithm over the complete dataset, including the FAK set,

namely all the bought fake followers accounts. Although obtaining very good results in detecting the real

human accounts, the algorithm achieves a poor fake follower account detection. Most of the accounts have

been erroneously tagged as humans too, mainly because the fake followers in our dataset have characteristics

that easily make them achieve a human score higher than the bot one.

The above inability to detect the fake accounts is evident in the results of our second experiment. To

evaluate the algorithm, we used it to predict the class of the accounts of our baseline dataset (BAS), reporting

the evaluation of the final prediction in Table 7. As expected, the algorithm has a poor accuracy (very close

to 0.5) and a high precision, meaning that the (few) accounts identified as fake are effectively fake. However,

it also has a very low recall, meaning that many of the other fake accounts were unidentified as fake. This

poor performance is also expressed by a F-Measure close to 0.1 and by the low MCC value.
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evaluation metrics

rule description accuracy precision recall F-M. MCC I gain I gain∗ Pcc Pcc∗

Camisani-Calzolari [12] (satisfaction of rules means human behavior)
1 profile has name 0.5 — — — — 0 0 0 0
2 profile has image 0.496 0.095 0.001 0.002 -0.06 0.003 0.003 0.06 0.06
3 profile has address 0.419 0.336 0.166 0.222 -0.187 0.026 0.026 0.187 0.187
4 profile has biography 0.621 0.811 0.316 0.455 0.306 0.072 0.072 0.306 0.306
5 followers ≥ 30 0.881 0.834 0.95 0.888 0.768 0.493 0.525 0.768 0.045
6 belongs to a list 0.755 0.678 0.971 0.799 0.566 0.268 0.275 0.566 0.127
7 tweets ≥ 50 0.865 0.909 0.811 0.857 0.735 0.439 0.621 0.735 0.289
8 geo-localization 0.667 0.602 0.986 0.748 0.434 0.163 0.166 0.434 0.188
9 has URL in profile 0.665 0.602 0.972 0.743 0.417 0.144 0.144 0.417 0.417
10 in favorites 0.738 0.848 0.579 0.689 0.502 0.195 0.44 0.502 0.30
11 uses punctuation in tweets 0.523 0.979 0.048 0.091 0.151 0.023 0.63 0.161 0.58
12 uses hashtags 0.608 0.965 0.224 0.364 0.337 0.1 0.677 0.337 0.521
13 uses iPhone to log in 0.705 0.633 0.977 0.768 0.489 0.202 0.219 0.489 0.293
14 uses Android to log in 0.669 0.603 0.991 0.75 0.442 0.164 0.176 0.446 0.242
15 has connected with Foursquare 0.565 0.535 0.996 0.696 0.257 0.173 0.173 0.442 0.199
16 has connected with Instagram 0.683 0.616 0.969 0.753 0.446 0.06 0.06 0.258 0.144
17 uses the website Twitter.com 0.508 0.572 0.067 0.12 0.036 0.003 0.347 0.061 0.374
18 has tweeted a userID 0.772 0.992 0.549 0.707 0.609 0.334 0.752 0.609 0.544
19 2*followers ≥ friends 0.721 0.642 0.998 0.781 0.531 0.26 0.26 0.531 0.531
20 tweets do not just contain URLs 0.53 0.947 0.064 0.12 0.167 0.299 0.673 0.587 0.403
21 retwitted tweets ≥ 1 0.753 0.967 0.524 0.679 0.569 0.278 0.722 0.569 0.49
22 uses different clients to log in 0.524 0.819 0.061 0.113 0.125 0.018 0.629 0.144 0.55

Van Den Beld (State of search) [11] (satisfaction of rules means bot behavior)
1 bot in biography 0.5 — — — — 0 0 0 0
2 following:followers = 100:1 0.541 0.541 1 0.15 0.205 0 0 0.006 0.006
3 same sentence to many accounts 0.438 0.438 0.78 0.146 -0.169 0.444 0.444 0.74 0.74
4 duplicate profile pictures 0.471 0.471 0.928 0.025 -0.146 0 0 0 0
5 tweet from API 0.118 0.118 0.017 0.2 -0.779 0.528 0.694 0.779 0.505

Socialbakers [14] (satisfaction of rules means fake behavior)
1 friends:followers ≥ 50:1 0.581 0.997 0.162 0.279 0.296 0 0 0.011 0.011
2 tweets spam phrases 0.501 1 0.003 0.005 0.036 0.435 0.45 0.719 0.404
3 same tweet ≥ 3 0.348 0.046 0.015 0.023 -0.407 0.166 0.317 0.441 0.284
4 retweets ≥ 90% 0.499 0.452 0.007 0.014 -0.009 0 0.478 0.007 0.555
5 tweet-links≥ 90% 0.511 0.806 0.03 0.057 0.084 0.006 0.401 0.087 0.353
6 0 tweets 0.521 0.988 0.043 0.083 0.146 0.02 0.621 0.146 0.289
7 default image after 2 months 0.496 0.095 0.001 0.002 -0.06 0.003 0.003 0.06 0.06
8 no bio, no location, friends ≥100 0.559 0.917 0.131 0.229 0.231 0.004 0.004 0.079 0.079

Table 8: Rules evaluation.

4.6. Single rule evaluation

In this section, we analyze the effectiveness of each single rule, as designed by the original authors, in

order to evaluate which rule can be considered as a good criterion for the detection of fake Twitter followers.

Table 8 summarizes the results obtained by the application of each rule introduced in Sections 4.1, 4.2,

and 4.3 to our BAS dataset. In Table 8, we highlighted the rules achieving high MCC values. As shown,

only three rules obtained a value higher than 0.6, namely: (1) the threshold of at least 30 followers, (2) the

threshold of at least 50 tweets, and (3) the use of a userID in at least one tweet.

As expected by the definition of MCC, such rules also exhibit a combination of high accuracy, precision,

and recall. However, it is worth observing the values for the information gain and the Pearson correlation

coefficient. The information gain of the rules (I gain) is always lower than the evaluation of the related

attribute I gain*, while this is not true for the Pearson correlation coefficient (Pcc and Pcc* ). Actually, this

happens because Pcc evaluates the linear dependency between two variables that assume very similar values,

namely the output of the rule and the class, while the Pcc* considers variables with more heterogeneous
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values. In the first case, indeed, both the variables class and the output can assume only the values 0 and

1: the class can be either 0 (human) or 1 (fake), the rules can output either 0 (false, for example, account

does not have more than 50 tweets) or 1 (true, for example, account has more than 50 tweets). Instead, for

the Pcc* , the attribute of a rule (in the example, the number of tweets) can assume much higher values

(account has 234 tweets). This is clearly not linearly dependent on the class values, resulting in lower values

for the Pcc* with respect to the Pcc [41].

Thus, for each rule listed in Section 4.1 (top part of Table 8), it is meaningless to compare the Pcc and

Pcc∗ values. Instead, we need to focus only on the same type of metric, namely by column, to compare

the linear dependency of the feature with the class. Then, directing our attention to the information

gain, we notice that many of the rules take into account attributes that are effectively able to perform

the discrimination between the two classes. If we consider as useful the rules and features that have an

information gain value higher than 0.5, we observe that, even if many rules exhibit a very low I gain, their

“feature” version becomes much more interesting: for example, rules 18, 20, 21 and 22 have an evident

increase in their information gain when used as features. Thus, we can derive that the rule is based on a

right assumption (for example, the use of hashtags), but the rule definition is too simple to be effective: the

algorithm proposed by [12] is simply too naive for the complex task of fake accounts detection in Twitter.

Coincidentally, we have that the best performing rules also show the highest Pcc values, namely their

satisfaction is more strongly related to the belonging class. Concerning the features underlying the rules,

we find that the Pcc∗ is strongly reduced because, as above noticed, they can (and indeed do) assume very

high values and this severely affects the linear correlation with the class.

Observing the other rules of Table 8, we can notice how none of the criteria suggested by online blogs

and by Socialbakers’ FakeFollowerCheck are successful in detecting the fake followers in our dataset. As

an example, all rules by Van Den Beld have accuracy and precision close to 0.5 or a very low recall. Also,

we observe that “tweet from API” has an MCC of -0.779, meaning that it is strictly related to the class of

the account, but by an inverse factor: in our dataset, fake followers accounts almost never tweet from API

(instead, they use Twitter.com to tweet), whereas human accounts have posted at least once from outside

the website. This is exactly the opposite behavior than that suggested by the blogger for bots, that (are

supposed to) almost exclusively post tweets using API. The relevance to the prediction task is also confirmed

by both the I gain/I gain∗ and the Pcc/Pcc∗ values.

Another interesting observation is that many rules proposed by Socialbakers have MCC values close to 0,

meaning that their outcomes are almost unrelated with the class of the accounts. Indeed, the large majority

of the accounts are recognized as humans, resulting in a high precision, accuracy around 0.5 and very low

recall. The exception is rule 6, “0 tweets”: as a rule, it has an information gain value of 0.02, but when

considered as a feature (i.e., number of tweets) it obtains 0.621. Similarly, rules 4 and 5 are much more

useful for the detection process when considering their underlying features (namely, number of retweets and

17



number of tweets with URLs). Summarizing, independently from the typology of the account, the rules are

almost always satisfied, leading to a severe flaw when dealing with fake followers detection.

5. Fake detection with algorithms based on feature sets

In this section, we examine works in [8, 2] that address spam account detection on Twitter. Both of

them propose a list of features to be extracted from manually classified datasets of accounts. Such feature

sets are then used to train and test machine learning classifiers in order to distinguish between humans and

spammers. Even if the proposed features have been originally designed for spam detection, here, for the first

time, we consider them to spot another category of Twitter accounts, i.e., the fake followers. Although many

other works exist in literature focused on Twitter spam detection (see Section 2), many of them consider

features that can be in some way assimilated to those analyzed in this and in the previous section.

Differently from the rule-based algorithms in Section 4, features are here presented as quantifications of

properties of the considered samples. Therefore, they are introduced without any prior knowledge about the

values for the features that will characterize the considered classes. Only after the training phase, it will be

possible to observe which are the most frequent values for the features within the different classes.

For our analysis, we employ classifiers that produce both “glass-box” and “black-box” models. In “glass-

box” models, such as Decision Trees and Regression Models, the inner structure of the models can be

understood by humans, also providing insights on how the classifiers identify fake accounts [39]. Instead,

in “black-box” models, such as Support Vector Machines, the inner structure of the model does not have a

direct human-explicable correspondence.

5.1. Detecting spammers in social networks

The study presented in [8] focuses on spambot detection. The authors exploit several characteristics

that can be gathered crawling an account’s details, both from its profile and timeline. For each investigated

account, such characteristics are exploited in a Random Forest algorithm [23, 43], that outputs if the account

is a spambot or not. The results of the analysis in [8] depicted some interesting features of the spambot

accounts under investigation, as reported in Table 9.

1. spambots do not have thousands of friends; 4. spambots have a high tweets containing URLs
total tweets

ratio (URL ratio);

2. spambots have sent less than 20 tweets; 5. spambots have a high friends
(followersˆ2)

ratio value (i.e., lower ratio

values mean legitimate users).
3. the content of spambots’ tweets exhibits the so-called
message similarity;

Table 9: Feature set proposed by Stringhini et al. [8].

To evaluate feature 3, we implement the notion of message similarity by checking the existence of at

least two tweets, in the last 15 tweets of the account timeline, in which 4 consecutive words are equal. This

notion has been given in a later work by the same authors [25].
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Without the original training set, we were unable to reproduce the same classifier, but we picked the

five features and used them to train a set of classifiers with our BAS dataset. The results are reported in

Table 12 of Section 5.3.

5.2. Fighting evolving Twitter spammers

The authors of [2] observed that Twitter spammers often modify their behavior in order to evade existing

spam detection techniques. Thus, they suggested to consider some new features, making evasion more

difficult for spammers. Beyond the features directly available from the account profile lookup, the authors

propose some graph-, automation-, and timing-based features. In Table 10 we detail nine of them, together

with the outcome of their analysis in [2].

1. age of the account (this feature also appears in [28]): the
more an account is aged, the more it could be considered a
good one;

6. API ratio ( tweets sent from API
total number of tweets

): higher values for suspicious
accounts;

2. bidirectional link ratio ( bidirectional links
friends

), where a bidirec-

tional link occurs when two accounts follow each other: this
feature has been tested to be lower for spammer accounts than
for legitimate accounts;

7. API URL ratio ( tweets sent from API and containing URLs
total number of tweets sent from API

): such

ratio is higher for suspicious accounts;

3. average neighbors’ followers: the average number of followers
of the account’s friends. This feature aims at reflecting the
quality of the choice of friends of an account. The feature has
been found to be commonly higher for legitimate accounts than
for spammers;

8. API tweet similarity: this metric considers only the number
of similar tweets sent from API. The notion of tweet similarity is
as in Section 5.1. This metric is higher for suspicious accounts;

4. average neighbors’ tweets: the average number of tweets of
the account’s followers. This feature is lower for spammers than
for legitimate accounts;

9. following rate: this metric reflects the speed at which an
accounts follows other accounts. Spammers usually feature high
values of this rate.

5. followings to median neighbor’s followers: defined as the
ratio between the number of friends and the median of the fol-
lowers of its friends. This feature has been found higher for
spammers than for legitimate accounts;

Table 10: Feature set proposed by Yang et al. [2].

The authors of [2] combine their features in four different machine learning classifiers and compare

their implementation with other existing approaches. We were unable to completely reproduce the machine

learning classifiers in [2], since we had a different dataset. Instead, here we evaluate how those features,

which proved to be quite robust against evasion techniques adopted by spammers, perform in detecting fake

Twitter followers. As in [2], the following rate (feature 9) has been approximated with the ratio friends/age,

since a precise evaluation would require to know the evolution of the number of friends of an account, but

this is, indeed, publicly unavailable.

Finally, in [2] there are also other features in addition to those mentioned above. However, as claimed

by the same authors, they are less robust with regards to evasion techniques and thus we decided not to

include them in our evaluation.
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evaluation metrics

feature description I gain Pcc

Stringhini et al. [8]
1 number of friends 0.263 0.030
2 number of tweets 0.621 0.289
3 content of tweets 0.444 0.740
4 URL ratio in tweets 0.401 0.353

5 friends
(followersˆ2)

0.733 0.169

Yang et al. [2]
1 age 0.539 0.436
2 bidirectional links ratio 0.905 0.875
3 avg. followers of friends 0.327 0.254
4 avg. tweets of friends 0.203 0.235
5 firends / med. foll. of friends 0.336 0.102
6 api ratio 0.544 0.635
7 api url ratio 0.058 0.113
8 api tweet similarity 0.460 0.748
9 following rate 0.355 0.214

Table 11: Evaluation of the single feature.

5.3. Evaluation

As done for the rule set in Section 4, we report in Table 11 the evaluation of the information gain and

the Pearson correlation coefficient for all the features within the BAS dataset. Also in this case, since the

Pcc evaluates the linear dependence between the considered feature and the class (that can only be 0 or 1),

it produces results that are slightly different when compared to the information gain. Observing the results

in Table 11, we can identify several promising features: “number of tweets” (already noticed in Section 4),

“ratio between friends and followersˆ2”, “bidirectional links ratio” and “API ratio”. The beneficial effect of

the bi-link ratio will be further confirmed by the experiments of Section 5.4.3.

To evaluate the combined effectiveness of the feature sets described in Sections 5.1 and 5.2 on detecting

fake follower accounts, we employed 8 classifiers, obtained from different machine learning-based algorithms,

namely: Decorate (D), Adaptive Boost (AB), Random Forest (RF), Decision Tree (J48), Bayesian Net-

work (BN), k-Nearest Neighbors (kNN), Multinomial Ridge Logistic Regression (LR) and a Support Vector

Machine (SVM). Our SVM classifier exploits a Radial Basis Function (RBF) kernel and has been trained

using libSVM as the machine learning algorithm [44]. During the training phase of the SVM, the cost and

gamma parameters have been optimized via a grid search algorithm. Similarly, the k parameter of the kNN

classifier and the ridge penalizing parameter of the LR model have been optimized via a cross validation

parameter selection algorithm. All the classifiers and the optimization algorithms employed in this work are

implemented within the Weka framework [43].

Among these algorithms, RF was the only one used in [8]. Instead, authors of [2] employed D, RF,

J48 and BN. We have decided to include AB in our work, since it is considered one of the most effective

machine learning algorithms for classification tasks [39]. Furthermore, we also added other well-known and

widely adopted classifiers, which are based on different classification techniques, such as SVM, kNN and LR,
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evaluation metrics

algorithm accuracy precision recall F-M. MCC AUC

Classifiers based on feature set by Yang et al. [2]
RF Random Forest 0.991 0.991 0.991 0.991 0.983 0.998
D Decorate 0.991 0.988 0.993 0.991 0.983 0.998
J48 Decision Tree 0.990 0.991 0.989 0.990 0.980 0.997
AB Adaptive Boosting 0.988 0.989 0.987 0.988 0.974 0.999

BN Bayesian Network 0.976 0.994 0.958 0.976 0.936 0.997
kNN k-Nearest Neighbors 0.966 0.966 0.966 0.966 0.932 0.983
LR Logistic Regression 0.969 0.966 0.973 0.969 0.939 0.996
SVM Support Vector Machine 0.989 0.985 0.993 0.989 0.976 0.989

Classifiers based on feature set by Stringhini et al. [8]
RF Random Forest 0.981 0.983 0.979 0.981 0.961 0.995

D Decorate 0.982 0.984 0.979 0.981 0.961 0.993
J48 Decision Tree 0.979 0.984 0.974 0.979 0.953 0.985
AB Adaptive Boosting 0.968 0.965 0.970 0.968 0.938 0.995

BN Bayesian Network 0.953 0.953 0.953 0.953 0.907 0.985
kNN k-Nearest Neighbors 0.954 0.961 0.946 0.953 0.907 0.974
LR Logistic Regression 0.927 0.921 0.935 0.928 0.855 0.974
SVM Support Vector Machine 0.959 0.967 0.950 0.958 0.917 0.958

Table 12: Performance comparison for 10-fold cross validation. Training set: BAS .

in order to perform a thorough evaluation of our detection system.We have built 8 classifiers adopting the

features in Sections 5.1 and 5.2 and we have trained the models using our baseline (BAS ) dataset. Then, we

have used a 10-fold cross validation [23] to estimate the performances of each obtained classifier. As for the

rule-based algorithms in Section 4.4, we look at the MCC as the preferred metric to assess the classifiers’

performances. Table 12 summarises the results. The highest values for each metric are shown in bold.

We can observe that all the classifiers have an excellent prediction capability. The ones built over the

feature set of [2] achieve slightly better results. In particular, the RF, J48 and D classifiers haveMCC greater

than 0.98. Similarly, precision and recall are around 0.99 for all of them. In addition, all the classifiers based

on the feature set by [2] have a higher AUC, when compared with the ones built with the feature set by [8].

Anyway, the latter also obtain high detection levels: accuracy, precision, and recall are around 0.98 for RF,

D and J48, with a MCC of around 0.96. The lower precision and recall with respect to the ones obtained

using the set of Yang et al. [2] show that the features of Stringhini et al. [8] exhibit the tendency to consider

as fake followers some human accounts. With both the [2] and [8] feature sets, BN, kNN and LR classifiers

achieve, overall, worse performances. The SVM classifier, instead, achieves remarkable results, especially

with the feature set of [2]. Indeed, in this experiment SVM scores only slightly worse than RF, D and J48,

and better than AB. Whereas, AB achieves extremely high performances when evaluated with the AUC

metric. Finally, among all the considered classifiers and evaluation metrics, RF and D are the ones that

have been proved to be more consistent.

Overall, even if some small differences can be observed in the evaluation metrics, all the classifiers almost

correctly distinguish between human and fake follower accounts, for our baseline BAS dataset. The feature-

based classifiers are indisputably more accurate for fake follower detection when compared with the CC
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algorithm, that does not perform well within our dataset, as observed in Section 4.5 above.

5.4. Discussion

By examining the internal structure of the classifiers, we get insights about the best features that con-

tribute more to distinguish between human and fake followers. In the case of decision trees, the best features

are the ones closer to the root and the classifier automatically finds the numeric thresholds characterizing,

for a given feature, the borderline between human and fake followers. It is worth noting that also the Dec-

orate, AdaBoost, and Random Forest algorithms exploit, ultimately, combinations of simple decision tree

classifiers. Despite their very good performance, they have the disadvantage of being difficult to analyze,

since they can consist in tens of individual trees that interact together. Then, we only focus on the J48

classifier (a single decision tree) to examine how the features are applied during the classification process.

5.4.1. Differences between fake followers and spam accounts

Looking at the tree structure, we observe some interesting differences between the fake followers in our

BAS dataset and the spam accounts characterized in [8] and [2]. For example, the feature URL ratio has

been found to have a higher value for spammers than for legitimate users, as highlighted in [8] (Section 5.1).

Observing the tree structure of our J48 classifier, instead, low values for this feature characterize fake

followers, compared with higher values that indicate human accounts in our baseline dataset. More than

72% of the fake followers in our training dataset have a URL ratio lower than 0.05, oppositely to 14% of

human accounts. Similarly, the API ratio feature has been found higher for spammers than for legitimate

accounts ([2], see also Section 5.2). In our dataset, the API ratio is lower than 0.0001 for 78% of fake

followers. A similar behavior has been observed for the average neighbor’s tweets feature, that has been

found to be lower for spammers in [2], but higher for our fake followers.

These initial observations highlight a behavioral difference between a spam account and a fake follower.

In particular, fake followers appear to be more passive compared to spammers and they do not make use of

automated mechanisms for posting their tweets, as spammers usually do.

5.4.2. Reducing overfitting

It is well known that trained classifiers can be subject to “overfitting”, namely the problem of being too

specialized on the training dataset and unable to generalize the classification to new and unseen data [45].

A simple way to avoid overfitting is to keep the classifier as simple as possible. In case of a decision tree

algorithm, for example, one solution could be reducing the number of nodes and, possibly, the height of the

tree. The decision tree obtained with the feature set of Stringhini et al. [8] has 22 leaves, 43 nodes, and a

height of 7, whereas the best feature is the friends/(followersˆ2) ratio that places at the root. The decision

tree with the feature set of Yang et al. [2] has 17 leaves, 33 nodes and a height of 8, with the bi-directional

link ratio as the root.
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tree details evaluation metrics

pruning method nodes leaves height accuracy precision recall F-M. MCC AUC

Decision tree based on feature set of Stringhini et al.[8]
subtree raising 0.25 43 22 7 0.979 0.984 0.974 0.979 0.953 0.985
reduced error 3 folds 31 16 5 0.975 0.971 0.971 0.971 0.943 0.989
reduced error 50 folds 9 5 4 0.964 0.957 0.957 0.957 0.914 0.984

Decision tree based on feature set of Yang et al.[2]
subtree raising 0.25 33 17 8 0.99 0.991 0.989 0.99 0.98 0.997
reduced error 3 folds 19 10 5 0.988 0.99 0.987 0.988 0.976 0.993
reduced error 50 folds 11 6 3 0.982 0.979 0.985 0.982 0.966 0.993

Decision tree based on feature set of Yang et al.[2], without the bi-link ratio feature
subtree raising 0.25 101 51 10 0.96 0.963 0.957 0.96 0.917 0.971
reduced error 3 folds 53 27 8 0.961 0.969 0.952 0.96 0.914 0.978
reduced error 50 folds 37 19 9 0.933 0.931 0.934 0.933 0.866 0.967

Table 13: Performance comparison with increased pruning. 10-fold cross validation. Training set: BAS .

A common practice to generalize the classifiers is the adoption of a more aggressive pruning strategy,

e.g., by using the reduce-error pruning with small test sets [23, 43]. Adopting this strategy, we were able to

obtain simpler trees with a lower number of nodes and a very reduced height. Such simpler trees generally

use subsets of the feature set, still maintaining very good performance on our BAS dataset.

Table 13 reports the characteristics and the performance of the experiments we have carried out, varying

the pruning strategy. It is worth noting that the complexity of the tree is not always directly connected

to an improvement in the detection capability: for example, for the feature set of Yang et al. [2], reducing

the number of nodes from 33 to 11 decreases the accuracy of 0.007 and the MCC of 0.014, only. Similarly,

the values for AUC remain almost the same between the pruned and the not pruned versions of the tree.

Furthermore, we clearly observe that the pruned version of Stringhini et al. [8] reduces its recall of 0.017,

while the one of Yang et al.[2] only drops of 0.004, meaning that the latter is able to miss fewer fakes than

the former one after pruning. This is also evident from the higher reduction of both F-Measure and MCC.

We think that this increased effectiveness is a direct consequence of the quality of the used features. Overall,

the results of this experiment show that, even reducing the features, it is possible to have a detection rate

higher than 0.95 (as in the last lines of Table 13, for [8] and [2], respectively). For instance, in those two

experiments, the features used by the pruned tree were only bi-directional link ratio, the average neighbors’

followers, the age, and the followings to median neighbors’ followers as a subset of the original feature set

of Yang et al. [2], and the friends/(followersˆ2), URL ratio, and number of friends as the subset for the

Stringhini et al. [8] original feature set.

5.4.3. Bidirectional link ratio

In Section 5.3 we observed that the bidirectional link ratio had the highest information gain among all

the considered features. In order to test if this is the decisive feature to distinguish between humans and

fake followers and how much it influences the detection process, we compare the results of the previous
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experiments with those of a new one. We build a decision tree classifier leaving out the bi-link ratio from

the feature set of Yang et al. [2] and compare its effectiveness against the classifier built with the complete

set. The results are reported in the last rows of Table 13.

This experiment is particularly interesting since, as detailed in next Section 6, this feature is the most

expensive to evaluate. The results in Table 13 show an evident decrease in accuracy, precision and recall for

the less pruned trees (subtree raising 0.25 and reduced error 3 folds), as well as for both F-Measure and AUC,

and an even noticeable decrease of the MCC measure. The reduced error pruning with 50 folds produces a

classifier that has MCC dropping from 0.966 to 0.866. Its detection level (accuracy) is still very good for all

the three pruned trees (0.964, 0.982 and 0.933, respectively), but we can clearly observe a remarkable drop

in both precision and recall, compared to the version with the whole feature set. This suggests that the

highest effectiveness we noticed in the above experiments after pruning (Section 5.4.2) is considerably lost

when we do not consider the bi-link ratio feature. The most interesting aspect is the increased complexity

of the decision tree: without the bi-link ratio, the classifiers need to resort to a considerably larger number

of nodes. For example, the tree that does not use that feature, pruned with subtree raising confidence of

0.25, requires 101 nodes, whereas the tree that uses it requires only 33 nodes.

From the results shown in Table 13, we conclude that the bidirectional link ratio is an important feature

for fake follower detection: even if not essential, it is extremely effective for the detection process. By

capturing the nature of the social ties between an account and its neighbors, this feature is intrinsically

harder to beat than those based on simpler characteristics, like, e.g., other information in the account’s

profile.

6. An efficient and lightweight classifier

Feature set Class A (profile) Class B (timeline) Class C (relationships)

Camisani-Calzolari [12]

has name, has image, has address,
has biography, followers ≥ 30,

belongs to a list, tweets ≥ 50, URL
in profile, 2 × followers ≥ friends

geo-localized, is favorite, uses
punctuation, uses hashtag, uses

iPhone, uses Android, uses
Foursquare, uses Instagram, uses
Twitter.com, userID in tweet,
tweets with URLs, retweet ≥ 1,

uses different clients

State of search [11]
bot in biography, friends

followers ≃ 100,

duplicate profile pictures

same sentence to many accounts,
tweet from API

Socialbakers [14]

friends
followers ≥ 50, default image after 2

months, no bio, no location, friends
≥100, 0 tweets

tweets spam phrases, same tweet
≥ 3, retweets ≥ 90%, tweet-links

≥ 90%

Stringhini et al. [8]
number of friends, number of

tweets, friends
(followersˆ2)

tweet similarity, URL ratio

Yang et al. [2] age, following rate
API ratio, API URL ratio, API

tweet similarity

bi-link ratio, average
neighbors’ followers, average
neighbors’ tweets, followings

to median neighbor’s
followers

Table 14: Feature crawling cost classes.

24



As previously shown in sections 4 and 5, the classifiers based on feature sets perform much better than

those based on rules. Similarly, we have seen that the feature set proposed by Yang et al. [2] seems to be

slightly more effective than the one proposed by Stringhini et al.[8], when used in feature-based classifiers

aiming at fake followers detection. Here, we look for an efficient and lightweight classifier, exploiting the best

features and the best rules, not only in terms of detection performance, but also considering their evaluation

costs. In particular, we can distinguish between the computational cost and the crawling cost required to

evaluate a feature (or a rule). Computational costs can be generally lowered with optimized algorithms and

data representations and they are negligible when compared to the crawling costs. Thus, in this section we

focus on the latter: we quantify the crawling cost of each feature and rule, and we build a set of lightweight

classifiers that make use of the most efficient features and rules, in terms of crawling cost and fake followers

detection capability. For the sake of readability, in the following section with the term “feature” we include

all the features presented in sections 4 and 5, namely also the features underlying the analyzed rules.

6.1. Crawling cost analysis

Intuitively, some features require few data for their calculation, while others require the download of big

amounts of data. For the sake of this analysis, we divide the features in three categories:

A) profile: features that require information present in the profile of the followers of the target account

(like, e.g., profile has name);

B) timeline: features that require the tweets posted in the timeline of the followers of the target account

(like, e.g., tweet from API );

C ) relationship: features that require information about the accounts that are in a relationship (i.e., that

are a friend, or a follower, or both) with the followers of the target account (like, e.g., bidirectional

link ratio).

Each category, in turn, belongs to a crawling cost class directly related to the amount of data to be crawled

from Twitter. Starting from the list of the followers of a target account, Class A features can be evaluated

simply accessing to all the profiles of the followers; Class B features require to download all the tweets

posted by each follower; Class C features need to crawl the friends and the followers of each follower of

the target account. To evaluate the class of cost associated to each feature’s category, we estimate the

number of Twitter API calls needed to download data required for the calculation. Results are in Tables 15

and 14. The following parameters refer to the Twitter account for which the number of fake followers is

being investigated:

f : number of followers of the target account;

ti : number of tweets of the i-th follower of the target account;

ϕi : number of friends of the i-th follower of the target account;
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profile timeline relationships

API calls
⌈

f
100

⌉

∑

i∈f

⌈

ti
200

⌉

∑

i∈f

(⌈

fi
5000

⌉

+
⌈ ϕi

5000

⌉

)

Best-case
⌈

f
100

⌉

f 2 ∗ f

Worst-case
⌈

f
100

⌉

16 ∗ f unpredictable

Calls/min. 12 12 1

Table 15: Number of API calls needed to download data.

fi : number of followers of the i-th follower of the target account.

The number of API calls for each category depends on the maximum number of accounts (100), tweets

(200) and friends/followers (5000) that can be fetched from Twitter with a single API request. For example,

for the profile category, a single API call can return 100 follower profiles, leading to
⌈

f
100

⌉

API calls in

total. The detailed costs do not account for the initial download of the whole list of f followers of the target

account, that requires
⌈

f
5000

⌉

API calls.

Table 15 also shows the minimum (Best-case) and maximum (Worst-case) number of API calls that

could possibly be required, that depend on the length of the timelines and the number of relationships of

the followers. The Best-case is when one single API call is sufficient to get all the data for a single follower.

For the Worst-case we can only precisely evaluate the number of API calls for the timeline category, since

the number of tweets that can be accessed from a user timeline is limited to 3200, leading to a maximum

of 16 calls for each follower. The number of friends and followers, instead, is not limited and, therefore, it

is impossible to calculate a worst-case scenario for the relationship category. However, just to provide an

estimation, we can consider the account with the highest number of followers on Twitter, which, at the time

of writing, belongs to the pop star Katy Perry (@katyperry), with about 60 millions of followers. We can

therefore consider as the worst-case scenario an account with 60 millions followers and 60 millions friends,

which leads to a number of API calls equal to 22000 ∗ f.

Observing the values of Table 15, we have a clear idea of the order of magnitude of each class: features

in Class B are 100 times more costly than features of Class A, while features of Class C could be several

orders of magnitude more costly than features of Class A.

Furthermore, to protect Twitter from abuse, the number of API calls allowed per minute is limited.

In Table 15, we also report the maximum number of calls allowed per minute (Calls/min.), which directly

impacts on the time needed to complete the data acquisition.

Some further considerations follow. Firstly, data collected for a category can be used to evaluate all the

features of that category. Secondly, Twitter limits the number of calls of the same API, but different APIs

can be called in parallel. This means that data for all the three feature categories can be possibly acquired

concurrently. The total time required to collect all data depends on the category that requires more time,

i.e., the relationship one. In other words, to get the total time, one should not consider the sum of the time
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evaluation metrics

algorithm accuracy precision recall F-M. MCC AUC

Class C classifiers that use all the features
RF Random Forest 0.994 0.997 0.990 0.994 0.987 0.999

D Decorate 0.993 0.993 0.993 0.993 0.987 0.999

J48 Decision Tree 0.992 0.991 0.992 0.992 0.983 0.993
AB Adaptive Boosting 0.987 0.988 0.987 0.987 0.975 0.999

BN Bayesian Network 0.960 0.965 0.954 0.960 0.921 0.991
kNN k-Nearest Neighbors 0.971 0.963 0.979 0.971 0.941 0.990
LR Logistic Regression 0.986 0.985 0.988 0.986 0.972 0.996
SVM Support Vector Machine 0.987 0.983 0.991 0.987 0.974 0.987

Class A classifiers that use only Class A (profile) features
RF Random Forest 0.987 0.993 0.980 0.987 0.967 0.995

D Decorate 0.984 0.987 0.981 0.984 0.964 0.995

J48 Decision Tree 0.983 0.987 0.979 0.983 0.962 0.983
AB Adaptive Boosting 0.972 0.975 0.969 0.972 0.941 0.995

BN Bayesian Network 0.966 0.969 0.963 0.966 0.928 0.991
kNN k-Nearest Neighbors 0.957 0.961 0.953 0.957 0.914 0.978
LR Logistic Regression 0.971 0.964 0.978 0.971 0.942 0.987
SVM Support Vector Machine 0.961 0.972 0.950 0.961 0.923 0.961

Table 16: Performance comparison for 10-fold cross validation. Training set: BAS .

needed for each of the three cost classes, but just the most costly one.

6.2. The Class A classifier

All the rules and features considered in this study fall into one of the three aforementioned categories, as

reported in Table 14. Therefore, their crawling cost impacts on the final cost of the whole feature set and,

ultimately, to the class of the classifier: a classifier that uses a certain feature set belongs to the class of the

more expensive feature. Then, all the classifiers of the previous sections are classifiers of Class B, with the

exception of the classifier with the feature set of Yang et al. [2], that belongs to Class C.

In the following, we consider a lightweight classifier working only with features of Class A. We aim at

verifying whether the Class A classifier reaches performances that are comparable to those of the most

expensive Class B and Class C classifiers.

Table 16 reports the results of the classifiers built on our BAS dataset, using two different feature sets:

all the features (independently from their cost) and the Class A features. We start observing that the

Class C classifiers, built over all the features considered in our study, perform better than all the other

ones, including the classifiers using the feature sets of Yang et al. [2] and Stringhini et al. [8], as reported

in Table 12. In particular, RF, D and AB achieve an AUC as high as 0.999. Class C classifier only slightly

outperforms Class A classifier. Indeed, there is a difference of around 0.02 in MCC for RF, D and J48.

The AUC reduction is even smaller, only 0.004 for RF, D, J48 and 0 for BN. It is worth noting that the

Class A classifier with BN outperforms the Class C competitor, noticeably obtaining an increase in all the

metrics, but the AUC. Instead, the Class A kNN, LR and SVM classifiers suffer from a significant drop in

performances with respect to the Class C counterparts.
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Concerning the complexity of the two decision trees obtained with the J48 algorithm, they are compa-

rable, since both of them are composed by 31 nodes and 16 leaves and they have a height of 7. A further

interesting observation is that both the classifiers employ a set of features that includes both features pro-

posed by the grey literature for fake detection, which we introduced in Section 4, and by Academia for spam

and bot detection, as detailed in Section 5.

The analysis carried out in Section 6.1 highlights the effort and time needed to compute many of the

features commonly proposed for the detection of spam and fake accounts. As shown by the Katy Perry

example, crawling costs for some of the proposed features are totally infeasible for accounts with hundreds

of thousands or millions of followers. For this reason, we trained and evaluated the proposed Class A

classifiers, which achieve overall good performances, while only exploiting cost-efficient features. The Class

A classifiers thus represent a feasible solution for the investigation of fake followers on a large scale.

We have to point out, however, that countermeasures could be taken to evade some of the simplest

features our classifiers are built upon [2]. This would require to continually monitor and update the choice

of such features, to keep pace with the fake follower generators. While contemporary fake Twitter followers

are effectively and efficiently spotted by our Class A classifier, we can consider the use of the most expensive

Class B or even Class C features to have stronger evidences about the more suspicious followers.

6.3. Validation of the Class A classifier

In this section, we propose a validation of our Class A classifier, built with our baseline BAS dataset.

In particular, we set up two different experiments based on a random sampling of Twitter accounts. For

the first experiment, we built a set of 1000 Twitter accounts, randomly selecting numeric Twitter user IDs,

ranging from user ID 12 (the very first valid Twitter account – @jack – belonging to Jack Dorsey, founder

of Twitter) to the user ID representing the last Twitter account created at the time of our experiment. This

represents an unbiased sample of all the currently available (i.e., not closed, banned or suspended) Twitter

accounts. This test set therefore comprises a broad range of accounts created during the nine years since

Twitter’s advent. For the second experiment, instead, we consider a random sample of 1500 accounts among

the followers of the US President Barack Obama – @BarackObama. This experiment resembles the practical

application scenario of the proposed classifier, since it investigates a sample of a single account’s followers,

in this case a major politician.

All the accounts acquired with the two aforementioned approaches have been labeled as humans, following

the same approach used in [26]. Twitter officially reports that fake and spam profiles together are less than

5% of all registered accounts [35], therefore we are confident that just a few among the accounts labeled as

humans might actually be fake ones. Automatically labeling the sampled accounts as humans would result

in an error of at most 5%, still allowing an overall correct validation of our classifiers. In addition, many of

the accounts randomly acquired for the first and second experiment show few signs of activity on Twitter
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evaluation metrics

algorithm accuracy precision recall F-M. MCC AUC

Class A validation on a test set of random sampled accounts
RF Random Forest 0.975 0.982 0.975 0.979 0.949 0.989

D Decorate 0.904 0.894 0.948 0.920 0.802 0.975
J48 Decision Tree 0.904 0.898 0.942 0.920 0.801 0.962
AB Adaptive Boosting 0.767 0.737 0.936 0.825 0.526 0.959
BN Bayesian Network 0.891 0.876 0.947 0.910 0.776 0.961
kNN k-Nearest Neighbors 0.946 0.962 0.944 0.953 0.889 0.969
LR Logistic Regression 0.551 0.922 0.252 0.396 0.299 0.827
SVM Support Vector Machine 0.955 0.982 0.941 0.961 0.910 0.958

Class A validation on a test set of random sampled Obama followers
RF Random Forest 0.929 0.889 0.975 0.930 0.862 0.970

D Decorate 0.909 0.875 0.948 0.910 0.820 0.964
J48 Decision Tree 0.902 0.868 0.942 0.903 0.807 0.924
AB Adaptive Boosting 0.862 0.810 0.936 0.868 0.733 0.949
BN Bayesian Network 0.786 0.710 0.947 0.811 0.607 0.943
kNN k-Nearest Neighbors 0.733 0.763 0.655 0.705 0.469 0.828
LR Logistic Regression 0.615 0.784 0.290 0.423 0.278 0.794
SVM Support Vector Machine 0.873 0.851 0.897 0.873 0.748 0.874

Table 17: Class A classifier validation on two different test sets.

(more than 70% of them did not post a tweet in the 3 months prior to our data acquisition). Thus, more

reliable checks like CAPTCHA-based verifications would result in very sparse answers. Furthermore, we

believe that also including less active accounts in our test sets, allows to validate our classifiers with Twitter

accounts having different characteristics than those of our baseline dataset of humans in Section 3.3 (e.g.,

showing fewer “human” features). Together with the human accounts, the test set also includes the 1401

fake followers we bought, but not included in the BAS dataset that we used as training set (Section 3.5).

In Table 17, we report the results of the experiments on the test sets. Comparing results of Table 17

with those of Tables 12 and 16, we notice a broader range of performances. Indeed, while in Tables 12

and 16 almost all the considered classifiers achieved comparable performances, here we can see some major

differences. This means that the increased difficulty of the detection task on the two considered test sets

highlighted differences that were not visible in the previous experiments.

From Table 17, we can observe that the validation against sampled Obama followers (bottom half of the

table) proves to be more error prone than that against random sampled accounts. Indeed, almost all the

classifiers achieve worse results in the former experiment, as deducible, for instance, from the AUC scores.

Observing the validation against the random sampled accounts, we can see that the five Class A classifiers

obtain an accuracy above 0.9, a precision close to (when not much higher than) 0.9 and a recall above 0.94:

this means that they are able to spot almost all the fake followers of the test set. This is particularly true

for the best performing classifier, RF, that reaches 0.975 for both accuracy and recall, with a precision of

0.982. The highest performances are also shown by both F-measure and MCC values, that are noticeably

higher for RF when compared with the others. AB and BN obtain lower results for both accuracy and

precision, but still a noticeably high recall, meaning that only few fake followers are left behind, but a
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considerably higher number of human accounts are classified as fake followers. Among all the classifiers,

LR is the one achieving the worst performances, because of the low MCC values obtained with both the

test sets: 0.299 and 0.278 respectively. For the validation against sampled Obama followers, also kNN

achieves unsatisfactory performances, with MCC equal to 0.469. The SVM classifier, instead, proves to be

extremely effective, being the second best classifier when validated against random sampled accounts, and

still performing very well against sampled Obama followers.

The RF, D, and J48 classifiers obtain results that are comparable for the two test sets, with an accuracy

greater than 0.9 and a precision close to 0.87, with a reduction of only 0.025 on average. This is also

confirmed by both the F-measure and MCC that are very close to the results above. In the two validation

experiments, AB and BN noticeably switch their performances: the Adaptive Boosting algorithm raises its

accuracy of 0.1 and its precision of around 0.08, outperforming the Bayesian Network-based one. This latter

looses 0.105 of accuracy, meaning that many of the accounts we labeled as humans were recognized as fake

followers. Also the RF classifier looses 0.4 of accuracy and a considerable 0.1 in precision, meaning that it

considers as fake followers many of the sampled Obama’s followers. We can finally observe that the AUC

metric is always very high and that does not consistently reflect the real performances obtained by the five

classifiers, as the F-measure and the MCC actually do.

6.4. Assessing the global importance of Class A features

Motivated by the results obtained by our Class A classifiers, we went further to asses the global impor-

tance of Class A features towards the detection of fake Twitter followers. In order to estimate the importance

of the single features among all the 8 classifiers, we followed the information fusion-based sensitivity analysis

technique adopted in [46]. Information fusion is a technique aimed at leveraging the predictive power of

several different models in order to achieve a combined prediction accuracy which is better than the predic-

tions of the single models [47]. Sensitivity analysis, instead, aims at assessing the relative importance of the

different features used to build a classification model [48]. It is therefore possible to combine information

fusion and sensitivity analysis to estimate the global importance of several features, used in different machine

learning classifiers, towards a common classification task.

To reach this goal, we firstly re-train each of the 8 Class A classifiers with our baseline BAS dataset, by

removing one feature at a time. This leads to 19×8 different classifiers. Subsequently, each of those classifiers

is evaluated against our test sets. The local sensitivity score for the i-th feature of the j-th classifier can be

computed as Sj,i =
MCCj,−i

MCCj
, namely as the reduction in classification performance of j when used without

the feature i with respect to the classification performance of j using all the 19 Class A features. Then,

we can compute a global sensitivity score for the i-th feature via a weighted sum of the local sensitivities,

Si =
∑

j

wjSj,i. The weighting factor wj is proportional to the MCC of the j-th classifier, as reported in

Table 17, so that the best performing classifiers are weighted more. Finally, we rank features and assess
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rank feature proposed in normalized score

1 friends/(followersˆ2) ratio [8] 1.000
2 age [2, 28, 4, 1] 0.919
3 number of tweets [1, 4, 8, 12, 14] 0.816
4 profile has name [12] 0.782
5 number of friends [32, 8, 14, 4] 0.781
6 has URL in profile [12] 0.768
7 following rate [2] 0.765
8 default image after 2 months [14] 0.755
9 belongs to a list [12] 0.752
10 profile has image [12] 0.751
11 friends/followers ≥ 50 [14] 0.736
12 bot in biography [11] 0.734
13 duplicate profile pictures [11] 0.731
14 2 × followers ≥ friends [11] 0.721
15 friends/followers ≃ 100 [11] 0.707
16 has address [12] 0.677
17 no bio, no location, friends ≥ 100 [14] 0.664
18 has biography [12] 0.602
19 number of followers [12, 4, 3] 0.594

Table 18: Global importance of Class A features for the detection of fake Twitter followers.

their relative importance by normalizing their global sensitivities, so that the best performing feature has a

normalized score of 1.

Table 18 shows the results of this information fusion-based sensitivity analysis. Notably, none of the

features is clearly dominant: all the 19 Class A features give a significant contribution to the detection of

fake Twitter followers. Results of this in-depth analysis also show a considerable agreement with our feature

evaluation studies reported in Tables 8 and 11. Specifically, the most important feature of Table 18, namely

friends/(followersˆ2) ratio, is the second best feature in Table 11, outperformed only by the Class C

feature bidirectional link ratio. Given the relevant contribution of other features such as number of friends

and following rate, we believe that features aimed at evaluating the social ties between an account and its

neighbors play a central role towards the detection of fake Twitter followers.

7. Conclusions

In this paper, we focused on efficient techniques for fake Twitter followers detection.

To reach the goal, we firstly created a baseline dataset of human and fake follower accounts, the latter

being bought from available online markets. Then, we surveyed various proposals for spammer and bot

detection, based on classification rules and feature sets. Such proposals come partly from Academia and

partly from the grey literature. Such rules and features were eventually tested on our dataset to understand

their effectiveness in detecting fake Twitter followers. A few features were selected and used by a set of

classifiers that we have trained on the baseline dataset. Going further, we ranked the best performing

features according to their crawling cost. This led us to identify three categories of features belonging to

three different, increasing, cost classes. Finally, we built a series of classifiers that only leverage cost-effective
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(Class A) features. With this final outcome, we were able to achieve detection rates comparable with the

best of breed classifiers, whereas these latter necessitate overhead-demanding features.

Among the results of this study, there is the construction of a baseline dataset of verified human and fake

follower accounts. To foster research on the novel issue of fake Twitter followers, we have publicly released

our dataset to the scientific community [33].

For our analysis, we considered 49 distinct features and 8 different “glass-box” and “black-box” machine

learning classifiers. So-called “glass-box” classifiers produce interpretable models and an analysis of their

inner structure allows to get insights into the mechanisms exploited to perform the detection. In turn, this

is useful to better understand the characteristics of Twitter accounts that can be leveraged to discriminate

between fake and genuine followers. Nonetheless, “black-box” classifiers have been recently employed in a

broad range of diverse classification tasks, achieving excellent results. Therefore, for the sake of experimen-

tation, we expanded the set of machine learning algorithms employed in previous works on fake and spam

detection, with the adoption of powerful classifiers, such as Support Vector Machines (SVM). Indeed, the

results of our analyses confirm that SVMs achieve results comparable to those of the best performing classi-

fiers (such as Random Forest and Decorate). The adoption of other powerful classification techniques, such

as Artificial Neural Networks (ANNs), could provide other interesting results and, therefore, we consider its

adoption and evaluation promising ground for future work.

Among all the analyzed features, we have seen that those yielding the best results are the ones based

on the friends and followers of the account under investigation, such as the bidirectional link ratio and the

friends/(followersˆ2) ratio. By evaluating the social ties between an account and its neighbors, these

features are more effective than those based on simpler characteristics, like, e.g., other information in the

account’s profile. However, relationships-based (Class C ) features are more demanding in terms of data

to be downloaded and, consequently, they require a significant analysis time, making them unsuitable for

analyses on massive amounts of followers. Timeline-based (Class B) features have been shown to be less

time-demanding, while still effective; hence, these might represent a promising trade-off between efficient

and accurate detections. Anyway, as shown by the proposed Class A classifiers, the detection of currently

available fake Twitter followers is possible even without leveraging resource-demanding features, by means of

efficient algorithms and accurate selection and combination of less-demanding features. We also evaluated

the global importance of the Class A features for the fake Twitter follower detection, using information

fusion-based sensitivity analysis and showing that those based on social relations play a dominant role.

As future work, we aim at designing and testing other advanced features that could be added to our

lightweight fake followers’ classifier, leveraging additional characteristics of Twitter accounts. Data that

could be further exploited for the classification task are the content of tweets and the accounts’ behav-

ior. In particular, bot development forums represent a fruitful source of information to know more about

bot/fake/spam accounts design, in terms, e.g., of similarities and differences in their behavior. As high-
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lighted by our work, the difficulty of the detection task and the massive numbers of accounts to analyze ask

for the adoption of features that are not only effective, but also efficient, with regard to their crawling costs.

Therefore, we believe that future works along this line of research should consider the balance between the

predictive power of new features and their cost. This would allow to improve the detection of fake Twitter

followers, while still retaining a scalable approach, making en masse analysis practically feasible.

It is foreseeable that countermeasures will be taken to masquerade a fake account with respect to some

of the simplest features which our classifiers are built upon. This would require to continually monitor and

update the choice of such features, conceivably studying (or directly interacting with) the same generators

of fakes, to keep their pace. Therefore, we believe that the features renovation process can be considered as

another interesting direction for future research.
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