174 research outputs found

    Phylogeny as a proxy for ecology in seagrass amphipods: which traits are most conserved?

    Get PDF
    Increasingly, studies of community assembly and ecosystem function combine trait data and phylogenetic relationships to gain novel insight into the ecological and evolutionary constraints on community dynamics. However, the key to interpreting these two types of information is an understanding of the extent to which traits are phylogenetically conserved. In this study, we develop the necessary framework for community phylogenetics approaches in a system of marine crustacean herbivores that play an important role in the ecosystem functioning of seagrass systems worldwide. For 16 species of amphipods and isopods, we (1) reconstructed phylogenetic relationships using COI, 16S, and 18S sequences and Bayesian analyses, (2) measured traits that are potentially important for assembling species between and within habitats, and (3) compared the degree to which each of these traits are evolutionarily conserved. Despite poor phylogenetic resolution for the order Amphipoda as a whole, we resolved almost all of the topology for the species in our system, and used a sampling of ultrametric trees from the posterior distribution to account for remaining uncertainty in topology and branch lengths. We found that traits varied widely in their degree of phylogenetic signal. Body mass, fecundity, and tube building showed very strong phylogenetic signal, and temperature tolerance and feeding traits showed much less. As such, the degree of signal was not predictable based on whether the trait is related to environmental filtering or to resource partitioning. Further, we found that even with strong phylogenetic signal in body size, (which may have large impacts on ecosystem function), the predictive relationship between phylogenetic diversity and ecosystem function is not straightforward. We show that patterns of phylogenetic diversity in communities of seagrass mesograzers could lead to a variety of interpretations and predictions, and that detailed study of trait similarities and differences will be necessary to interpret these patterns

    Rock wall manipulation experiment conducted in Bodega Bay, CA from 2010-2011

    Get PDF
    Dataset: Rock Wall ExperimentThese data summarize results from a field experiment testing effects of gastropod grazer diversity and substrate heterogeneity generated by barnacles on intertidal algal succession. The manipulation experiment was conducted on a vertical rock wall in the mid-high intertidal zone of Bodega Marine Reserve, Bodega Bay, CA. Surveys were conducted from during 2010-2011. On each survey date, grazer abundance was recorded and the percent cover of algal taxa was visually assessed. For a complete list of measurements, refer to the supplemental document 'Field_names.pdf', and a full dataset description is included in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: http://www.bco-dmo.org/dataset/641692NSF Ocean Sciences (NSF OCE) OCE-085070

    Facilitation and the niche: Implications for coexistence, range shifts and ecosystem functioning

    Get PDF
    Viewing facilitation through the lens of the niche concept is one way to unify conceptual and empirical advances about the role of facilitation in community ecology. We clarify conceptually and through examples from marine and terrestrial environments how facilitation can expand species' niches and consider how these interactions can be scaled up to understand the importance of facilitation in setting a species' geographic range. We then integrate the niche-broadening influence of facilitation into current conceptual areas in ecology, including climate change, diversity maintenance and the relationship between diversity and ecosystem functioning. Because facilitation can influence the range of physical conditions under which a species can persist, it has the potential to mitigate the effects of climate change on species distributions. Whereas facilitation has mostly been considered as a diversity-promoting interaction by ameliorating abiotic stresses, if facilitated species' niches expand and become less distinct as a result of habitat amelioration, the forces that maintain diversity and promote coexistence in regions or habitats dominated by the facilitator could be reduced (i.e. the sign of the effects of facilitation on populations could be species-specific). Finally, shifting or broadening ecological niches could alter the relationship between diversity and ecosystem functioning. A niche-based perspective on the effects of facilitation can foster a greater mechanistic understanding of the role played by facilitation in regulating species coexistence, range shifts and ecosystem functioning in a changing world

    Chemical defense among hydroids on pelagic Sargassum:predator deterrence and absorption of solar UV radiation by secondary metabolites

    Get PDF
    The pelagic Sargassum community of the western Atlantic Ocean is species rich, with high densities of predatory fishes and invertebrates living in close association with the floating seaweed. Little, however, is known about predator-prey interactions among Sargassum inhabitants and the factors that might help maintain this species richness. To assess how predators may affect the abundance of sessile Sargassum epiphytes, and how these epiphytes may defend themselves against predators, we examined interactions between the most abundant small predator associated with Sargassum mats, the filefish Monacanthus hispidus, and 4 epiphytic hydroid species. This fish was the only Sargassum-associated predator to significantly consume hydroids in initial assays. When filefish were given a simultaneous choice of all 4 hydroid species, they consumed 40 to 45% of 3 species (Clytia noliformis, Aglaophenia latecarinata, and Tridentata turbinata), but consumed less than 5% of the fourth species, Tridentata marginata. Filefish consistently rejected small portions of T. marginata colonies, but consumed a palatable control food. Bioassay-guided fractionation of T. marginata extract resulted in the isolation of a single deterrent secondary metabolite, tridentatol A. Three additional metabolites (tridentatols B to D) had no effect on filefish feeding. In addition to the defensive role of tridentatol A, the tridentatols (A to D) strongly absorb damaging solar ultraviolet (UV) radiation, and thus may function as sunscreens. To our knowledge, this is the first demonstration of chemical defenses among the pelagic Sargassum fauna, and the first report that a hydroid secondary metabolite deters consumers. Prey chemical defenses are an important factor in maintaining species richness in many predator-rich communities, but despite being chemically defended from predators, T. marginata was far less abundant than any of the other, more palatable, hydroids. The factors that allow high-preference hydroids to persist in such a predator-rich community remain unknown

    A Pleistocene legacy structures variation in modern seagrass ecosystems

    Get PDF
    Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems

    Geographic Variation in Camouflage Specialization by a Decorator Crab

    Get PDF
    In North Carolina, the decorator crab Libinia dubia camouflages almost exclusively with the chemically noxious alga Dictyota menstrualis. By placing this alga on its carapace, the crab behaviorally sequesters the defensive chemicals of the plant and gains protection from omnivorous consumers. However, Dictyota is absent north of North Carolina, whereas Libinia occurs as far north as New England. Crabs from three northern locations where Dictyota is absent (Rhode Island, Connecticut, and New Jersey) camouflaged to match their environment, rather than selectively accumulating any one species. When D. menstrualis was offered to crabs from northern sites, they did not distinguish between it and other seaweeds for camouflage, whereas crabs from Alabama and two locations in North Carolina used D. menstrualis almost exclusively. In addition, in winter and spring, when Dictyota was seasonally absent in North Carolina, Libinia selectively camouflaged with the sun sponge Hymeniacidon heliophila, which was chemically unpalatable to local fishes. Thus, southern crabs were consistent specialists on chemically defended species for camouflage, while northern crabs were more generalized. The geographic shift in crab behavior away from specialization coincides with a reported decrease in both total predation pressure and the frequency of omnivorous consumers. These shifts in the nature and intensity of predation pressure may favor different camouflage strategies (generalist vs. specialist), contributing to the observed geographic differences in camouflage behavior

    Envisioning a marine biodiversity observation network

    Get PDF
    Author Posting. © University of California Press and American Institute of Biological Sciences, 2013. This article is posted here by permission of University of California Press and American Institute of Biological Sciences for personal use, not for redistribution. The definitive version was published in BioScience 63 (2013): 350-361, doi:10.1525/bio.2013.63.5.8.Humans depend on diverse ocean ecosystems for food, jobs, and sustained well-being, yet many stressors threaten marine life. Extensive research has demonstrated that maintaining biodiversity promotes ocean health and service provision; therefore, monitoring the status and trends of marine biodiversity is important for effective ecosystem management. However, there is no systematic sustained program for evaluating ocean biodiversity. Coordinating existing monitoring and building a proactive marine biodiversity observation network will support efficient, economical resource management and conservation and should be a high priority. A synthesis of expert opinions suggests that, to be most effective, a marine biodiversity observation network should integrate biological levels, from genes to habitats; link biodiversity observations to abiotic environmental variables; site projects to incorporate environmental forcing and biogeography; and monitor adaptively to address emerging issues. We summarize examples illustrating how to leverage existing data and infrastructure to meet these goals

    Local-scale nutrient regeneration facilitates seaweed growth on wave-exposed rocky shores in an upwelling system

    Get PDF
    Abstract This study shows that, even on exposed, wave-swept, rocky shores in a nutrient-replete upwelling ecosystem, mussels (Mytilus californianus) facilitate the growth of the seaweed Porphyra perforata by enhancing nutrient concentrations in the nearby water column. In field surveys on emergent substrate in the mid-intertidal zone, we found ten times greater abundance of P. perforata on mussels than on adjacent rock. In field experiments, P. perforata accumulated and grew more quickly on mussels than on bare rock or on mussel mimics, suggesting that nutrients excreted by mussels might be responsible for greater P. perforata cover. At high tide, water column ammonium concentrations over mussel beds were nearly double those found over bare rock. Correspondingly, tissue nitrogen concentrations were higher, and carbon-to-nitrogen ratios were lower in P. perforata growing on mussels compared to bare rock. Given the dominance of mussels in mid-intertidal regions of temperate coasts worldwide, ammonium regeneration could be a general contributor to local-scale nutrient availability, even in high-flow systems characterized by high nutrient concentrations

    Global patterns in the impact of marine herbivores on benthic primary producers

    Get PDF
    Despite the importance of consumers in structuring communities, and the widespread assumption that consumption is strongest at low latitudes, empirical tests for global scale patterns in the magnitude of consumer impacts are limited. In marine systems, the long tradition of experimentally excluding herbivores in their natural environments allows consumer impacts to be quantified on global scales using consistent methodology. We present a quantitative synthesis of 613 marine herbivore exclusion experiments to test the influence of consumer traits, producer traits and the environment on the strength of herbivore impacts on benthic producers. Across the globe, marine herbivores profoundly reduced producer abundance (by 68% on average), with strongest effects in rocky intertidal habitats and the weakest effects on habitats dominated by vascular plants. Unexpectedly, we found little or no influence of latitude or mean annual water temperature. Instead, herbivore impacts differed most consistently among producer taxonomic and morphological groups. Our results show that grazing impacts on plant abundance are better predicted by producer traits than by large‐scale variation in habitat or mean temperature, and that there is a previously unrecognised degree of phylogenetic conservatism in producer susceptibility to consumption
    corecore