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(Worm et  al. 2006, Stachowicz et  al. 2007, Cardinale et  al. 
2012). In the same way that long-term financial health is 
stabilized by a diversified portfolio, ecosystem health and 
resilience are often enhanced by biodiversity (Schindler 
et  al. 2010). These benefits suggest that managing systems 
to maintain marine biodiversity may provide a way to 
resolve otherwise conflicting objectives resulting from piece-
meal management (Palumbi et  al. 2009, Foley et  al. 2010). 
Therefore, in addition to the direct and indirect benefits 
that it provides, biodiversity can be seen as a master variable 
for practically evaluating both the health of ecosystems and 
the success of management efforts. Yet, our knowledge of 
marine biological diversity remains fragmented, uneven in 
coverage, and poorly coordinated.

Why a marine biodiversity observation network, and 
why now?
Developing a marine biodiversity observation network 
(MBON) to help identify threats and to provide both an 
early warning and data for forecasting models should 
be a priority. Marine habitats and organisms are facing 
an unprecedented worldwide threat from climate change, 
pollution, overfishing, habitat destruction, and invasive spe-
cies (Lotze et  al. 2006, Doney and Schimel 2007, Halpern 
et al. 2008). In the last decade, the Pew Ocean Commission, 
the US Commission on Ocean Policy, and the US National 
Ocean Policy emphasized the increasing importance of 

Biological diversity, or biodiversity, can be broadly defined   
as the variety of life, encompassing variation at all 

levels, from the genes within a species to biologically created 
habitats within ecosystems (United Nations 1992). Humans 
depend on biodiversity for food, clothing, medicine, recre-
ation, and biosecurity (MA 2005, Cardinale et al. 2012), but 
there are also important ethical and cultural justifications 
for its protection. Although the value and vulnerability of 
biodiversity have been increasingly recognized since the 
1992 United Nations Earth Summit in Rio de Janeiro, that 
recognition has come more slowly for the ocean, which 
represents 90% of Earth’s habitable volume (Hendriks 
et al. 2006). Yet, biodiversity is no less important in the sea 
than on land. The ocean’s ecosystems and the associated 
biogeochemical processes provide humanity with food, 
oxygen, livelihoods, and a stable climate. These benefits are 
implicit in the US Interagency Ocean Policy Task Force’s 
final recommendations to the president on 19 July 2010, in 
which it was declared that “[i]t is the policy of the United 
States to protect, maintain, and restore the health and bio-
logical diversity of ocean, coastal, and Great Lakes ecosys-
tems and resources” (www.whitehouse.gov/files/documents/
OPTF_FinalRecs.pdf ).

A growing body of research demonstrates that maintain-
ing biodiversity is key to the provision of ecosystem services 
and, more specifically, to sustaining ecosystem health and 
resilience in the face of growing environmental change 
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addressing such threats to ocean ecosystems. The scarcity  
of quantitative data on biological baselines in many parts of 
the ocean—including the current status of organisms and 
ecosystems and their trends over time—undermines our 
ability to respond effectively to these threats. Obtaining the 
essential data to do so would be advanced by establishing a 
coordinated MBON to allow proactive responses, rather than 
the current reactive responses, to such threats (Andréfouët 
et al. 2008a). Knowledge of biodiversity will also facilitate the 
successful implementation of ecosystem-based management 
and marine spatial planning and the effective monitoring 
of biosecurity—that is, guarding against threats posed by 
the introduction of invasive species and infectious agents. 
An MBON could provide early warnings of invasions while 
eradication is still possible. For example, in 2000, divers 
monitoring eelgrass near San Diego, California, discovered 
the highly invasive seaweed Caulerpa taxifolia, which caused 
widespread ecological damage in the Mediterranean Sea 
(Williams and Smith 2007). Because it was detected early, 
C. taxifolia was restricted to a single cove and was success-
fully eradicated before it could spread. Similar proactive 
monitoring of plankton communities can facilitate early 
warning of impending harmful algal blooms (Schnetzer et al. 
2007, Campbell et al. 2010). Finally, a systematic approach 
to monitoring biodiversity and managing information on 
biological baselines would benefit (and potentially draw 
support from) public and private sector efforts in environ-
mental assessment by facilitating common standards and 
by reducing the need for expensive in-house or contracted 
taxonomic expertise.

The recently completed Census of Marine Life (see table 1 
and supplemental table S1, available online at http://dx.doi.
org/10.1525/bio.2013.63.5.8, for abbreviations of the moni-
toring efforts and agencies mentioned in the article) was 
an intensive, decadelong international effort to assess the 
state of marine biodiversity, which greatly enhanced our 
knowledge of ocean life and established an unprecedented 
collaborative network and infrastructure. Large gaps remain, 
however, in our knowledge of the occurrence and abundance 
of organisms (Webb et al. 2010). Most regions lack authori-
tative inventories of their marine organisms, and estimates 
of the global proportion of undescribed marine species 
range widely, from as low as 24% (Costello et  al. 2012) 
to as high as 91% (Costello et  al. 2010, Mora et  al. 2011). 
Although the Ocean Biogeographic Information System 
(OBIS) holds more than 33 million records of approximately 
120,000 species, about half of the approximately 250,000 
known marine species have no records in the database, and 
two-thirds of those that do are represented by only one 
or two records each (Appeltans et  al. 2012). The scarcity 
of species-level inventories compiled using standard clas-
sifications makes it impossible to reliably estimate even the 
percentage of species known, the variation among regions, 
or—perhaps most important—how living marine resources 
are changing over time. This uncertainty also extends to the 
microbes that are key players in the ocean’s biogeochemical 

cycles (Amaral-Zettler et  al. 2010). Therefore, although 
sobering estimates of the rate of biodiversity loss in many 
terrestrial habitats have been produced in recent data syn-
theses (Butchart et al. 2010, Barnosky et al. 2011), there are 
few quantitative assessments of how diversity responds to 
human pressures in the oceans (Hendriks et  al. 2006, Sala 
and Knowlton 2006). Nor is there any standardized, coordi-
nated approach to monitoring marine diversity that could 
produce a coherent picture of the current status and trends.

We can learn much from experiences with land-based 
observation networks such as the National Ecological 
Observatory Network (NEON), but the conceptual and 
practical design of an MBON involves challenges unique to 
operating in the sea. These include the misperception that 
the oceans are so vast that they can absorb all impacts and 
the technical limitation that remote-sensing satellites pen-
etrate only the top few meters of the ocean. Major logistical 
challenges also hamper access to marine habitats and organ-
isms. As a consequence, the level of current knowledge about 
marine biodiversity falls off rapidly with distance from land 
and from the ocean’s surface (figure  1; Webb et  al. 2010). 
Here, we outline a strategy to integrate and leverage existing 
efforts to scaffold a new MBON. For thematic consistency, 
we focus on US waters, but we expect that the main prin-
ciples should translate to other countries and spatial scales.

Building an MBON: Synthesizing expert opinion
To develop a sound basis for informing policy decisions, 
seven US federal agencies sponsored a 3-day workshop in 
2010 involving more than 40 participants. This was followed 
by active solicitation of commentary from the community, 
which included a breadth of expertise and experience, with 
the goal of developing design principles for an MBON 
(NOPP 2010). The community’s input included identifying 
priorities for taxonomic range and resolution, target habi-
tats, and appropriate methodologies. Below, we present the 
expert consensus on general features that might constitute 
an MBON and then suggest implementation opportunities.

There was broad agreement (NOPP 2010) that a coor-
dinated MBON would greatly improve the numerous but 
scattered existing efforts, would be crucially useful for 
establishing status and trends in marine biodiversity, would 
advance both fundamental and applied knowledge for a 
range of users, and would be less costly than reactive and 
curative responses to threats to ocean life and ecosystem 
services. The many ancillary benefits of an MBON include 
understanding long-term cyclic changes in the environment 
and in resources to provide a baseline for detecting human 
impacts, assessing the effects of multiple stressors on eco-
system health, understanding the causes of diversity differ-
ences across water masses and regions (for both species and 
communities), and defining links between biodiversity and 
ecosystem services at large scales to complement insights 
from small-scale studies.

Consensus was reached among the workshop par-
ticipants (NOPP 2010) and the larger marine science 
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Table 1. Monitoring programs, agencies, and acronyms mentioned in the text.
Name Acronym Region Focus

Australian Institute of Marine Science Long 
Term Monitoring Program 

LTMP Australia, Great 
Barrier Reef

Fishes and corals across multiple reefs 

Argo Network — Global Temperature and salinity profiling floats, upper 
2000 meters

Biodiversity Heritage Library BHL Global Open-access legacy literature of biodiversity 

California Cooperative Oceanic Fisheries 
Investigations

CalCOFI North America, 
Pacific Coast

Environment and living resources monitoring 

Census of Marine Life CoML Global Cataloging species diversity, distribution, and abundance

Centre de Recherches Insulaires et Observatoire 
de l’Environnement

CRIOBE Polynesia Monitoring of coral reefs and fish populations

Encyclopedia of Life EOL Global Open-access species-level information

Group on Earth Observations Biodiversity 
Observation Network

GEO BON Global Collated terrestrial, freshwater, and marine biodiversity 
observations 

Integrated Ocean Observing System IOOS Global US contribution to global ocean observing system 

Intergovernmental Platform on Biodiversity and 
Ecosystem Services

IPBES Global Interface between science community, policymakers 

Life in a Changing Ocean LiCO Global Biodiversity knowledge for sustainability 

US Long Term Ecological Research Network LTER 
Network

North America, primarily 
the United States

Coordinated interdisciplinary ecosystem research

Martha’s Vineyard Coastal Observatory MVCO US East Coast Long-term measurement of meteorological and oceanic 
processes

Millennium Coral Reef Mapping Project — Global Global coral reef distribution database 

Microbial Inventory Research Across Diverse 
Aquatic Long Term Ecological Research Sites

MIRADA-
LTERS

North America, Arctic, 
Antarctica, Polynesia

Aquatic microbial inventory across US LTER Network 
sites

Moorea Biocode Project — Polynesia Inventory of nonmicrobial life in a tropical ecosystem

National Ecological Observatory Network NEON North America, United 
States (terrestrial)

Continent-scale ecological observations, synthesis 

US National Environmental Satellite, Data, and 
Information Service Coral Reef Watch

NESDIS Global Remote sensing, monitoring, modeling of reefs 

National Institute of Water and Atmospheric 
Research

NIWA New Zealand Taxonomic expertise and resources for biodiversity 

US National Oceanographic Partnership Program NOPP United States Ocean-related monitoring and programs too large for 
single US government agencies 

New Jersey Shelf Observing System NJ SOS New Jersey Ocean current mapping

New Millennium Observatory NeMO Pacific Undersea volcanic activity

North-East Pacific Time-Series Underwater 
Networked Experiments

NEPTUNE Northeast Pacific, 
North America, Canada

Regional cabled observatory network 

The US National Oceanic and Atmospheric 
Administration’s Reef Assessment and Monitoring 
Program

— Pacific Ocean islands Research to support reef ecosystem management 

Ocean Biogeographic Information System OBIS Global Alliance to make biogeographic data available on the Web

Ocean Observatories Initiative OOI East Pacific, West 
Atlantic

Sustained ocean measurements

Ocean Research and Conservation Association ORCA Global Observation of water conditions and ecosystem health

Pacific Coast Ocean Observing System PacOOS North America, 
Pacific Coast

California Current Large Marine Ecosystem 

Partnership for Interdisciplinary Studies of 
Coastal Oceans

PISCO North America, 
Pacific Coast

Long-term ecosystem research and monitoring program 

Smithsonian’s Marine Global Earth Observatory MarineGEO Global Expansion of the Smithsonian’s biomaterial collections

Smithsonian Oceanographic Sorting Center SOSC Global Processing center for biological and geological 
specimens 

Southern California Association of Marine 
Invertebrate Taxonomists

SCAMIT North America, 
Pacific Coast

Promoting standardized invertebrate taxonomy 

Southern California Coastal Water Research 
Project

SCCWRP North America, 
Pacific Coast, 
Southern California

Collaborative regional monitoring, data analyses 

World Registry of Marine Species WoRMS Global Authoritative list of names of marine species 
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community queried thereafter that implementing an 
MBON is not limited by ideas or by technology. Both 
expertise and well-developed techniques already exist for 
assessing and quantifying marine diversity at all levels. 
Instead, the most significant barriers are inadequate coor-
dination and personnel. Many methods are currently avail-
able to capture diversity at multiple levels across taxonomic 
and spatiotemporal scales and habitats (figure 2), although 
improvements are possible in most approaches, and new 
ones will certainly be developed (table  2). For example, 
many methods developed for shallow water can be adapted 
to deep habitats, and similar sampling approaches can 
capture pelagic diversity across a taxonomic range, from 
microbes to phytoplankton and metazoan zooplankton. A 
recurring theme was the need to link sampling approaches 
across scales and environmental conditions by coordinat-
ing existing methods (table 2).

How to build an MBON: Integrate and leverage
The common overarching themes that emerged from the syn-
thesis of expert opinion (NOPP 2010) were that considerable 

efforts are already being expended on 
monitoring related to biodiversity and 
resource management, but these are 
not integrated; therefore, an MBON 
could make progress rapidly by build-
ing on existing facilities and programs, 
integrating with new approaches at 
all levels. An MBON should build on, 
coordinate with, and learn from the 
foundation of networks, infrastruc-
ture, and experience established by 
prior global efforts such as the Census 
of Marine Life, as well as the multi-
tude of regional and large-scale envi-
ronmental research and observation 
efforts. Larger-scale regional to global 
efforts include the Group on Earth 
Observations (GEO) BON, NEON, 
the Ocean Observatories Initiative, the  
Integrated Ocean Observing System, 
Life in a Changing Ocean, the 
Smithsonian’s Marine Global Earth 
Observatory, and the recently estab-
lished Intergovernmental Platform on 
Biodiversity and Ecosystem Services 
(tables 1 and S1). Regional BONs that 
include a marine component appear to 
be gaining traction outside the United 
States and include the European BON, 
the Japanese-led Asia-Pacific BON and 
the Canadian-led Arctic BON. A suc-
cessful model seems to be one that 
is funded through local government 
support and that can interact with the 
rest of the world through collaborative 

engagement with other regional BONs. The GEO BON can 
therefore serve as a coordinating entity to synergize and 
leverage regional BON activities.

In the United States, numerous marine monitoring 
efforts, spanning a range of scales, are carried out by munic-
ipalities, state and local agencies, the US Environmental 
Protection Agency, and the private sector, with some efforts 
tracking thousands of species at hundreds of sites. For 
example, the Southern California Coastal Water Research 
Project helps coordinate collaborative regional programs 
that monitor water quality and marine habitats, combin-
ing the efforts of a large number of separate programs in 
those regions (Ranasinghe et al. 2010, Pondella et al. 2012). 
Coordinating more broadly among such programs could 
add value to all parties by linking data, experimenting with 
and diffusing best practices, standardizing protocols, and 
sharing infrastructure and personnel through economies of 
scale. One possible goal is a network with a node for each 
of the nation’s (or the world’s) large marine ecosystems, 
each coordinated by a consortium of academic institutions 
within the region.

Figure 1. The number of observations of biodiversity with depth (in meters) 
for pelagic organisms. Abbreviations: A, continental shelf; B, continental 
slope or mesopelagic; C, continental slope or bathypelagic; D, abyssal plain; 
E, hadal zone; km3, cubic kilometers. Source: Adapted with permission from 
Webb and colleagues (2010).
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To achieve the desired integration, a comprehensive 
MBON program must explicitly include incentives and 
resources for coordinating and standardizing. In addi-
tion, legacy data should be assembled and synthesized to 
extend and identify trends and gaps in taxonomic, spatial, 
and temporal coverage. It is important to link biodiversity 
surveys that  capture data at  all scales—from microbes to 
whales, instants to centuries, and Niskin bottles to entire 
ecosystems—as well as to determine the appropriate scales 
at which to address particular questions. Initially, sampling 
will have to be frequent and intensive; as knowledge of an 
area grows, sampling can be focused on particular places, 
taxa, or times of year.

Comprehensive understanding will require the use of 
both conventional and new technologies. Extending exist-
ing operational systems is a practical way to capitalize on 
existing logistics. Well-tested methodologies can be adapted 
to study taxa, regions, or processes beyond those for which 
they were designed. For example, routine automation of 

new acoustic and imaging technologies could expand their 
ranges and resolution.

Toward an operational MBON: Recommendations
In the expert synthesis process (NOPP 2010), we identified 
several cross-cutting themes and potentially transformative 
approaches to developing an MBON (box 1). Most funda-
mentally, biodiversity observations must be systematically 
linked to and must interact with observations of appropriate 
abiotic environmental variables—for example, those flowing 
from the developing network of ocean observing systems 
(see also Carr et al. 2011). Efforts must also be coordinated 
across scales, from local to international networks (see 
also Costello et al. 2010). These themes are reflected in the 
following recommendations, which include actions judged 
to be implementable now or in the near future with existing 
technology and infrastructure (see the subsequent sections 
for details), as well as longer-term actions that will require 
substantial investment or development.

Figure 2. Aquatic biodiversity can be assessed over spatial scales from millimeters (mm; cm, centimeters; m, meters) 
to thousands of kilometers (km) using a combination of detection methods (top panel) and observing infrastructures 
(bottom panel). Some observing infrastructures can accommodate multiple detection methods, indicated here by 
different colors: For example, ships can accommodate all four detection methods, whereas satellites use only imaging 
methods. The relevant spatial scales refer to the range of a single unit and single sortie for each instrument type. 
Abbreviation: ROV, remotely operated vehicle.
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Table 2. Overview of approaches and methods potentially useful in monitoring marine biodiversity over a range of spatial 
and taxonomic scales and on the basis of currently available technologies. 
Method category Example approaches and programs Target taxa Environment

Colonization-trap 
methods

Autonomous reef monitoring structures, sediment trays, granite blocks, 
disc racks, settlement plates

Macroinvertebrates Benthic substrata, 
shallow to deep sea

Field survey methods Photoquadrats, Multi-Agency Rocky Intertidal Network, coastal biodiversity 
surveys, the Australian Institute of Marine Science’s Long Term Monitoring 
Program, SeagrassNet

Macroinvertebrates, 
algae, fish

Benthic substrata, 
reefs

Sample-based methods The Continuous Plankton Recorder survey, plankton nets, a pelagic 
and benthic monitoring program, trawl surveys, high-performance liquid 
chromatography pigment analysis, gene microarrays, DNA and RNA 
sequencing, nucleic acid sequence-based amplification, environmental 
sample processor, the All Taxon Biodiversity Inventory

Plankton, fish, 
benthos

Pelagic and benthic 

Mixed sample, video, 
and acoustic methods

Remotely operated vehicle surveys, the Bio-Optical Multi-frequency and 
Environmental Recorder

Plankton, fish, 
macroinvertebrates

Pelagic, benthic, 
shallow, midwater, 
deep sea

Acoustic methods Autonomous acoustic habitat monitoring, multifrequency echosounding, 
passive acoustic monitoring (towed, cabled, moored or glider based)

Sound-producing 
animals, fish, 
micronekton, 
zooplankton

Pelagic and benthic

In situ optical methods In situ zooplankton imaging systems, holographic imaging systems, 
flow cytometry, absorption spectrometry, fluorescence spectrometry, 
Bathysnap camera system

Plankton, 
macroinvertebrates

Pelagic, benthic 
substrata

Remote sensing (optical 
or spectral methods)

The Airborne Visible Infrared Imaging Spectrometer, imaging 
spectroradiometers, ocean color radiometry satellites

Phytoplankton, 
habitat-forming 
macroinvertebrates 
and algae

Pelagic, shallow 
benthic substrata

Animal-carried sampling Position-only tags, environmental sampling, diving and behavior, 
multisensor tags with acoustics or video

Large vertebrates Pelagic

Note: See supplemental table S2, available online at http://dx.doi.org/10.1525/bio.2013.63.5.8, for further details.

Box 1. Central themes and potentially transformative approaches to a marine biodiversity  
observation network (MBON).

Crowdsourcing an MBON. Existing regional and global observation systems constitute a wealth of experiments testing network 
models, infrastructure, technology, and sampling approaches. Learning from such experiments will greatly streamline the development 
and maximize the cost-effectiveness of a comprehensive MBON. 

An MBON should be designed by nature, not by people. Biodiversity observation sites should be selected on the basis of oceano-
graphic forcing factors, biogeographic provinces, and the distribution of water masses, rather than on the basis of political boundaries, 
in order to ensure that insights into global marine biodiversity change and its causes are environmentally relevant.

It’s a small world after all. Connections among pelagic, benthic, and adjacent terrestrial systems (including human activities) are crucial 
to understanding the temporal scales and driving forces of marine ecosystem processes and their impacts on society. Similarly, com
prehensive biodiversity inventories should incorporate state-of-the-art assessment techniques from molecular and organismal to com-
munity and seascape scales. Standardization of taxonomy and data infrastructure will facilitate making the necessary connections. 

We have the technology. Effective employment of autonomous underwater vehicles, remotely operated vehicles, drifters, and observa-
tory platforms to complement ship-based activities will enhance flexibility and range in sampling, will expand the range of accessible 
habitats and data, and will streamline costs.

The past is the key to the present. Precise, accurate, and useful marine biodiversity observations will require making legacy data readily 
accessible online, enhancing tools for automated specimen identification using both morphology and DNA, and developing predictive 
models based on empirical research. 

An MBON should roll with the punches. Adaptive monitoring, with empirical data and models, will ensure that biodiversity research 
evolves to answer unforeseen questions. Determining which parameters should be monitored will require determining whether and 
how proxies can be effective.

Power to the people. Developing human resources is as important as technical innovation in creating a successful MBON. To maxi-
mize participation and accessibility, MBONs should require depositing voucher specimens (where practical and ethical) in publicly 
accessible repositories and should result in products that are widely usable. Creative use of citizen science could also broaden support 
for, engage the public with, and reduce the costs of sustaining an MBON.
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until 1992, which employed resident taxonomists to process, 
sort, and provide preliminary identification of specimens 
received from expeditions. An important addition would 
be parataxonomists trained to make routine identifications, 
which would free professional taxonomists to assist with 
difficult identifications and to develop taxonomic resources 
for nonspecialists, which would make taxonomy more acces-
sible and efficient. The United States lags behind several 
other nations in developing such a marine biodiversity infra-
structure. For example, New Zealand’s National Institute 
of  Water and Atmospheric Research produces taxonomic 
manuals, conducts coastal and oceanic habitat and bio
diversity surveys, and monitors invasive species. Most of 
these efforts, however, are aimed at specialists and do not 
provide user-friendly identification materials.

The design of an MBON should carefully balance the 
benefits of centralization with those of a more dispersed 
network. The latter include wider availability of taxonomic 
expertise, training, and research opportunities. Similarly, it 
is impractical and unwise to have a single central reposi-
tory for specimens; instead, enhancing existing natural 
history collection resources—both personnel and publicly 
accessible physical facilities—would strengthen biodiversity 
infrastructure to collectively accommodate the many speci-
mens to be archived. Importantly, collection infrastructure 
to house and care for the volume of voucher specimens 
generated by surveys must be enlarged, improved, and 
adequately staffed.

Recommendation 4: Produce a comprehensive checklist and 
identification guide to the marine organisms of US waters.  A 
key requirement for an effective MBON is an accurate 
and up-to-date checklist of US marine biota, along with 
user-friendly identification tools. A major impediment to 
studying and monitoring US marine biodiversity is that 
existing taxonomic resources are scattered in the specialized 
and gray literature and are often narrow in taxonomic or 
regional scope. This situation contrasts with the organized 
efforts by other nations, including New Zealand (Hewitt 
et al. 2004) and the European Union (Costello et al. 2006). 
Organizing and synthesizing such resources would greatly 
streamline and enhance the capacity for a biodiversity inven-
tory. This process has already begun with efforts such as 
the Encyclopedia of Life, the Biodiversity Heritage Library, 
OBIS, and the World Registry of Marine Species (tables  1 
and S1). The taxonomy of the macroflora and macrofauna 
of US waters is relatively well known, so assembly of a 
comprehensive checklist and guide would involve mostly 
coordination and synthesis, with select revisionary efforts 
for poorly understood taxa. We estimate that a small group 
of mission-oriented master taxonomists could produce a 
checklist and assemble identification tools for US marine 
biodiversity in about a decade, enhanced with images and 
DNA sequences as they become available. Such a United 
States–focused effort must coordinate with global efforts in 
order to facilitate and enhance the taxonomy, as well as to 

Recommendation 1: Coordinate biodiversity sampling and integrate 
methods across taxa, habitats, and hierarchical levels.  The func-
tioning of marine ecosystems and of the services they 
provide are mediated by complex interactions among a 
wide range of living organisms. Understanding these inter
actions requires knowledge of a broad range of taxa and a 
coordinated sampling effort with standardized methods. 
Many components of such an effort can be implemented 
immediately (tables 2 and S2). A common theme is the need 
to link molecular data, classical specimen-based approaches, 
and optical or acoustical images. Sharing solutions for sam-
pling designs and data handling with other efforts, including 
NEON, which has similar aims in the terrestrial realm of the 
United States, and GEO BON (Scholes et al. 2008), which is 
a global environmental monitoring network, will help avoid 
duplication of effort, will ensure that the data are compat-
ible and comparable, and will add value to all of the involved 
parties’ efforts.

Recommendation 2: Maximize compatibility of an MBON with 
legacy data.  The central questions motivating the establish-
ment of an MBON involve trends through time, including 
responses of biodiversity and ecosystems to climate change, 
fishing pressure, and pollution. Addressing such questions 
requires that data from an MBON be maximally comparable 
with historical biodiversity data, such as those from fisher-
ies surveys and other long-term time series, and museum 
collections. Such legacy data are invaluable as indicators 
of former conditions but are also highly diverse and idio-
syncratic. Therefore, an MBON should invest in digitiz-
ing historical marine biodiversity data (e.g., unpublished 
environmental impact reports, specimen collections) and 
in generating new data that are maximally compatible with 
existing data.

Recommendation 3: Establish one or more biodiversity observation 
headquarters to coordinate sample processing, including taxo-
nomic identifications, data management, and training.  A compre-
hensive MBON will ultimately require sustained long-term 
support both for the personnel to process large volumes 
of samples and observations (e.g., molecular data, physi-
cal specimens, images) and for the requisite information 
technology infrastructure. This could be achieved most 
efficiently and economically by combining in at least one 
physical center a cadre of mission-oriented master taxo
nomists and parataxonomists who have expertise covering 
a wide range of marine organisms, with information tech-
nology personnel and infrastructure equipped to handle 
large volumes of molecular, specimen, image, and acoustic 
data. Data should be managed across scales of time, space, 
and organism size and made available in a timely manner, 
in user-friendly formats, following standards set by the 
relevant scientific community (Yilmaz et  al. 2011). One 
potential model that achieved some of these goals was 
the  Smithsonian Oceanographic Sorting Center, a unit of 
the US National Museum of Natural History from 1962 
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representativeness of the studied areas, whereas the lat-
ter provide depth through a higher-resolution and more 
integrated picture. The prime theoretical considerations in 
selecting sites include the richness and representativeness of 
both taxa and habitats, the likelihood of local and regional 
threats, and  sensitivity to global climate forcing (boundar-
ies between physicochemical realms should be targeted). 
Logistical feasibility is also important to siting decisions. 
The examples outlined below are intended to provide realis-
tic models of MBON nodes that take advantage of existing 
resources for several habitats in US waters. The United States 
also has an opportunity (and a responsibility) for a more 
global focus on marine biodiversity, given its administration 
of dependent territories in the Pacific and the Caribbean, its 
presence in the Arctic and Antarctic, and its maritime com-
mercial activities.

Estuaries and nearshore regions.  Estuaries and nearshore 
coastal regions are some of the most productive aquatic 
habitats, generating a wide array of goods and services. They 
are the aquatic regions most affected by human activities, 
including entry points for invasive species (Ruiz et al. 2000). 
Nearshore environments provide ideal opportunities to test 
several proposed MBON approaches because of their rela-
tive ease of access, long history of study, and rich databases 
available from conservation and monitoring programs, 
which are reflected in comparatively well-known taxonomy 
and ecology and a well-characterized baseline. This also 
makes them ideal for the early detection of invasive species; 
a thorough and responsive MBON could detect new arriv-
als, which would support attempts to eradicate them before 
they establish.

A central feature of coastal regions is that many habitat 
formers are emergent or shallow-water plants (e.g., marsh 
grasses, mangroves, seagrasses) that are amenable to obser-
vation by remote sensing and, therefore, to linking biodiver-
sity observations from microscales to regional scales. Such 
components of habitat biodiversity can be surveyed over 
large scales using air- or space-borne platforms, including 
satellite and aircraft imagery and LIDAR (light detection 
and ranging; Chust et al. 2008, Vierling et al. 2008). On-the-
ground sampling for morphological and genetic identifica-
tion of species composition must then complement aerial 
surveys. Deeper waters can be sampled semicontinuously 
with buoy-based instrumentation, passive imaging, and 
gliders. Environmental data from these platforms would be 
supplemented by periodic cruises to collect biological speci-
mens and by acoustic mapping of bottom landscapes and 
habitat diversity, ground truthed with collections. This gen-
eral approach could be adapted to many nearshore marine 
and freshwater habitats.

The US continental shelf.  Geologically, the US continental shelf 
comprises two distinct entities: the narrow, steep, and geo-
logically active rocky West Coast and the broad, geologically 
passive sediment shelves of the East and Gulf Coasts. These 

provide context for the recognition of invasive organisms 
(Costello et al. 2010).

Recommendation 5: Invest in developing new approaches for 
automated sample processing and biodiversity informatics cura-
tion.  A major frontier in implementing an integrated MBON 
is the development of systems to automate processing, 
organizing, and archiving the rapidly growing stream of 
biodiversity data. Innovations might include image recogni-
tion systems, automated processing of genetic samples, and 
algorithms for species recognition (Sosik and Olson 2007). 
It is crucial that investments be made to develop informatics 
tools that efficiently link large data sets (Howe et al. 2008), 
including molecular, morphological, image, acoustic, and 
taxonomic data from both new surveys and legacy sources. 
Strategic investment in these areas would probably pay for 
itself by reducing the labor involved in processing the large 
data streams expected from an MBON and by increasing 
the extent to which data can be made available in real time. 
Another key challenge in curating biodiversity data involves 
developing rigorous, standardized systems (ontologies) for 
organizing phenotypic information, including the vast leg-
acy of traditional taxonomic descriptions (Deans et al. 2012) 
and building a cyberinfrastructure for organizing species-
distribution information (Jetz et al. 2012).

Recommendation 6: Initiate an integrated MBON demonstration 
project as soon as is possible.  A comprehensive MBON will 
mature gradually. An important early step will be to prove 
the concept of an end-to-end observation program—from 
the intraspecific genetic variation important to ecosystem 
functioning (Hughes et  al. 2008) to species diversity and 
remotely sensed habitat-level variation—at one or more sites, 
preferably by leveraging well-developed existing programs 
and infrastructure. The project or projects would serve to 
field test and compare proposed methodological approaches 
to an MBON (tables 2 and S2) and to evaluate the feasibil-
ity and cost of integration across scales and methods in the 
same system. The latter goal includes linking the catalog of 
molecular diversity to organism morphologies by means of 
specimens and images—and in turn to valid taxon names—
and ground truthing remotely sensed habitat-level data 
(through the collection of both specimens and data from the 
abiotic environment) to coincide with satellite observations. 
This recommendation could be achieved by a targeted call for 
proposals of projects to be supported by federal agencies with 
interests in marine biodiversity (e.g., through the National 
Oceanographic Partnership Program process; NOPP 2010). 
In the next section, we offer some suggestions for regions in 
which such a demonstration project might be feasible.

Designing an MBON: Candidate regions
The design of a comprehensive MBON should carefully 
balance the representation of unstudied areas with the 
representation of those that have been subject to intensive 
prior research. The former provide breadth and assess 
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from piers occurs as a part of monitoring for harmful algal 
blooms. Southern California also provides an excellent 
model for integrating the taxonomic component of a bio-
diversity monitoring system, through voluntary standard-
ization of methods and taxonomies by workers at regional 
municipalities and agencies (Cadien and Lovell 2011). The 
Southern California Association of Marine Invertebrate 
Taxonomists integrates data from 20 programs focused on 
infaunal and epibenthic monitoring, using grabs and trawls, 
covering hundreds of sites from nearshore to 1000  meters 
and including data on more than 3000 species. Coordinating 
across existing locations would facilitate the understanding 
of how variation in diversity, interacting with physical forc-
ing, affects the resilience of regional assemblages. Explicitly 
linking observing systems across habitats would also allow 
assessment of whether patterns of mass and energy transfer 
across ecosystems are paralleled by gradients in diversity. 
A coordinated MBON built out from existing efforts on 
the West Coast would be especially well poised to address 
how biodiversity and ecosystem functioning respond to 
climate fluctuations on the interannual to decadal scales 
associated with the El Niño Southern Oscillation and 
Pacific Decadal Oscillation cycles. The Pacific Coast Ocean 
Observing System or the West Coast Governors’ Agreement 
on Ocean Health might be used to facilitate integration of 
projects in Oregon, California, and Washington to produce 
a coastwide MBON.

Coral reefs.  Coral reefs are among the most diverse and 
imperiled marine ecosystems, with vast areas under US 
jurisdiction in Micronesia, Samoa, the central Pacific Ocean, 
the Caribbean, Hawaii, and Florida. Reefs are important 
components of one of the largest marine protected areas 
in the world, the Papah naumoku kea Marine National 
Monument in the Northwestern Hawaiian Islands. The long 
history of study and monitoring of reefs, across broad spa-
tial, temporal, and taxonomic scales, often by national orga-
nizations (e.g., NOAA, the Australian Institute of Marine 
Science), provides an excellent basis for a future reef-focused 
MBON. Transects and quadrats have traditionally been used 
in reef-monitoring efforts, with a focus on fishes, corals 
(and their diseases), algae, and other sessile macrobenthos, 
so that much of the reef diversity represented by mobile 
invertebrates and microbes has been missed. Autonomous 
reef monitoring structures (ARMS) were recently developed 
to partly fill this gap and can be used in conjunction with 
DNA sequencing to facilitate identification; ARMS have 
been used successfully to sample sessile and sedentary reef 
organisms in a standardized way (Plaisance et  al. 2011). 
Benthic habitat mapping using multi- and hyperspectral 
imagery from aircraft and satellites is also well established 
on reefs, including those in the Florida Keys, Puerto Rico, 
and the US Virgin Islands, and allow substantial differentia-
tion of bottom and community types in clear, shallow waters 
(Guild et al. 2008). For example, the Millennium Coral Reef 
Mapping Project, a collection currently including more than 

margins host a dramatic range of habitats with very differ-
ent biological communities and ecologies, from subtropical 
coral reefs in Florida to the upwelling zone along the narrow 
shelf of the North Pacific and the broad, shallow sediment 
plains of the southeastern United States, the Bering Sea, and 
the Arctic Ocean. Here, we focus on two end members that 
span this range.

The US Northeast shelf is a highly productive and well-
studied region influenced by prevailing advection from 
subpolar regions, dynamic exchanges across coastal and 
offshore boundaries, and proximity to dense human popu-
lation centers. The layout for a Northeast continental shelf 
MBON should include selected transects to capture cross-
shelf variation in water masses that profoundly affects bio-
diversity and could be designed to complement and upgrade 
the National Oceanic and Atmospheric Administration’s 
(NOAA) existing fisheries stock assessments, protected 
resource surveys (e.g., the Marine Resources Monitoring, 
Assessment, and Prediction Program), and its Ecological 
Monitoring Program, which span the entire region multiple 
times per year. For example, selected transects could be 
located in order to leverage existing nearshore observing 
systems such as the Martha’s Vineyard Coastal Observatory 
and the New Jersey Shelf Observing System, planned shelf-
break observing infrastructure that is part of the US National 
Science Foundation’s Ocean Observatories Initiative, and 
the slope-to-deep-sea time series provided by long-term 
occupation of the Line W moorings. Building on these exist-
ing pieces, a comprehensive MBON for the US Northeast 
shelf could be achieved with modest additional ship time 
by extending spatial, temporal, and taxonomic coverage 
to fill the gaps in current observing programs. Combining 
such sea-based sampling approaches with remote-sensing 
observations would bridge scales of spatial, temporal, and 
taxonomic variation (see tables 2 and S2).

On the US West Coast, the narrow continental shelf and 
slope associated with the California Current Large Marine 
Ecosystem is influenced by a seasonal coastal upwelling, 
with large implications for both benthic and pelagic eco-
systems and their coupling. The steepness of the slope and 
its proximity to shore mean that habitats from intertidal to 
open ocean exist within a relatively small area, which offers 
a relatively efficient and economical approach to a com-
prehensive MBON. A Pacific Coast MBON could leverage 
and build on the considerable resources already devoted to 
clusters of ocean monitoring activities centered in Oregon, 
Monterey Bay, and Southern California, each spanning a 
range in latitude, upwelling influence, and degree of human 
impact and urbanization. For example, the quarterly cruises 
off Southern and Central California organized by California 
Cooperative Oceanic Fisheries Investigations currently col-
lect data on phytoplankton biodiversity and zooplankton 
biomass and biodiversity, as well as a suite of physical 
parameters. The Partnership for Interdisciplinary Studies of 
Coastal Oceans supports surveys of intertidal and shallow 
subtidal diversity. Additional sampling of phytoplankton 
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cabled observatories in the Northeast Pacific (the North-East 
Pacific Time-Series Underwater Networked Experiments 
Observatory, the Ocean Observatories Initiative, and the 
New Millennium Observatory). The passive and active lis-
tening posts recently built along the Pacific Coast of North 
America (Payne et al. 2010) should be linked to this system. 
A prime location for a deep-sea site in the tropics is the 
Marianas Islands, with its history of research on physical 
and biological aspects of the Mariana Trench and its associ-
ated environments. Acoustic sensors might be added to the 
Argo Network, and biological sensors could be added to 
cabled observatories. Automated technologies for studying 
organisms in shallower water could be modified for use in 
the deep sea, such as the Ocean Research and Conservation 
Association’s Eye-in-the-Sea camera (Widder et al. 2005), for 
visualizing bioluminescent organisms, and motion-activated 
imaging at bait stations. Regular sampling in the remote 
environment of the deep sea would be best achieved by inte-
grating autonomous collectors with fixed physical observing 
system stations. For small organisms, these could include 
sediment traps that periodically shift preservative-laden 
containers and environmental sample processors (Scholin 
et  al. 2009). For larger organisms, imaging systems would 
be appropriate. Both are most practical on the seafloor, 
associated with moorings, where physicochemical data are 
already being collected. In the pelagic realm, drifters and 
floats might be designed to gather smaller samples, but ships 
will also be needed.

Conclusions
A comprehensive MBON is a realistic and feasible goal. It can 
begin now by building strategically on existing infrastruc-
ture, networks, and technology and can then grow gradually. 
Several themes are central to designing and implementing 
an effective MBON. First, we have the technology for major 
advances—the challenges are primarily coordination among 
existing efforts, standardization, and interoperability, which 
will require appropriate incentives. Of course, funding will 
be required for major expansion, but much initial progress 
is possible with modest additional investment. A second 
theme is modularity: Many building blocks are already in 
place, and significant progress can be made by adding bio-
logical observations to primarily physical observing systems 
and linking them. Finally, taking a proactive and flexible 
approach—adaptive monitoring—from the beginning can 
save money and can potentially save property and lives by 
anticipating hazards resulting from a changing ocean. The 
time required to achieve the goals outlined here will of 
course depend on political will. But, given a concerted effort, 
modest funding, and the many pieces already in place, the 
core of a comprehensive MBON could be achieved within 
5 years.
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1700 Landsat-acquired multispectral images, provides a 
baseline for assessing current reef status around the globe 
(Andréfouët et al. 2008b). Remote sensing can monitor for 
changing habitat distributions and ecosystem responses over 
large spatial scales, as is done by the National Environmental 
Satellite, Data, and Information Service Coral Reef Watch 
satellite monitoring program, which monitors and models 
ocean temperature data to warn of warming events that 
could cause coral bleaching.

A potential model of an MBON that links observations 
at multiple biological scales has been developed on the 
coral reefs of the Polynesian island of Moorea. The Moorea 
Biocode  Project (Check 2006) documents and character-
izes all species on the island through collection, vouchering, 
imaging, DNA sequencing, and taxonomic identification. 
The resulting taxonomic infrastructure and identified genetic 
sequence library allow quantitative sampling and tracking of 
biodiversity through novel tools and approaches, including 
ARMS and sampling of planktonic larvae of benthic species 
and of the gut contents of targeted species. Monitoring of reef 
biological communities has also been ongoing on Moorea 
for 40 years, through the Centre de Recherches Insulaires et 
Observatoire de l’Environnement field station, and has been 
enhanced since 2004 by the establishment of a long-term 
ecological research site that collects geochemical and physi-
cal oceanographic measurements and characterizes ecologi-
cal communities in depth. The Moorea Microbial Inventory 
Research Across Diverse Aquatic Long Term Ecological 
Research Sites project has provided a first baseline of micro-
bial diversity in these waters (McCliment et al. 2011).

The deep sea.  The deep sea is the largest part of the biosphere 
and consists of two very different, linked habitats: the pelagic 
realm—waters beyond the continental shelf from the surface 
to the bottom—and the benthic seabed. Much of the deep 
sea lies outside national boundaries and jurisdictions, so 
international and industry collaborations are essential to 
implementing an effective deep-sea MBON.

Because research in the pelagic realm is very sparse 
except near the surface (figure  1), guidance and historical 
precedents for developing a deep-sea MBON are limited. 
Reliable, long-term research on the biology of the deep 
benthos extends back only a few decades. Currently, the best-
studied sites include Site M, at 4100  meters off Southern 
California (Smith et  al. 2001); Davidson Seamount; and 
the Monterey Canyon (Ruhl et al. 2008). Deep locations off 
the  East Coast of North America are farther offshore and 
are therefore logistically more difficult to study. As part of a 
first MBON effort, priority might be given to one Atlantic 
and one Pacific deep-sea system along the North American 
coast and to one in the tropical Pacific.

Sampling in deep-sea habitats could be leveraged using 
existing or planned infrastructure. For example, observ-
ing networks could be tied to the Discovery Corridor in 
the Atlantic, which extends from the Fundy Isles region of 
Canada (Herder and Van Guelpen 2008), and the planned 
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