8 research outputs found

    Effect of 17β-estradiol and genistein on cultured vascular smooth muscle and endothelial cells and characterization of tissue responses to 17β-estradiol and genistein-eluting stents in porcine cultured blood vessels

    No full text
    Die Perkutane Koronare Intervention mit Stentimplantation ist die bevorzugte Behandlungsmethode kardiovaskulärer Erkrankungen. Das Ziel besteht in der Weiterentwicklung von Drug-Eluting-Stents, die signifikant die Restenoserate senken. In dieser Arbeit wurden 17β-Estradiol und Genistein auf zellulärer Ebene sowie im Gewebekulturmodell untersucht. Es wurde für 17β-Estradiol keine Kardioprotektivität gezeigt. Genistein kann vermutlich durch lokale Freisetzung die vaskuläre Heilungsreaktion verbessern und stellt somit eine Option in der Weiterentwicklung von Drug-Eluting-Stents dar.The percutaneous coronary intervention with implantation of a stent is the preferred method for the treatment of cardiovascular diseases. The aim is the further development of drug-eluting stents that significantly reduce the rate of restenosis. In this work 17β-estradiol and genistein were examined for the effect on vascular cells and cultured blood vessels. At the cellular and tissue level 17β-estradiol provides no cardio protective properties. The local release of genistein can improve the vascular healing response. It represents an option in the development of new drug-eluting stents

    An Alternative Promoter in Intron1 of the Renin Gene is Regulated by Glucose Starvation via Serum Response Factor

    No full text
    Background/Aims: Renin is known as a secretory glycoprotein that ultimately leads to angiotensin II generation. In this way renin exerts pro-inflammatory effects and promotes cardiac injury. Additional transcripts have been identified encoding for a cytosolic renin isoform that - in contrast to secretory renin - exhibits cardioprotective effects under ischemic conditions. The promoter of these transcripts is unknown. Methods: Using qRT-PCR and dual-luciferase reporter assay we examined the expression and promotor activity of cytosolic renin as well as the regulation by glucose starvation in H9c2 cardiomyoblasts. Results: We identified a promoter in intron1 of the rat renin gene with two glucose starvation-sensitive regions. One region contains a binding motif for serum response factor (SRF). Under glucose depletion expression of SRF increased prior to cytosolic renin. SRF knock down selectively decreased cytosolic renin expression and attenuated the increase of cytosolic renin expression under glucose depletion. Conclusions: Transcripts encoding for secretory and cytosolic renin are differentially expressed. The low basal expression of cytosolic renin as well as its induction under ischemia-related conditions represents an efficient system regulated in accordance with its previously identified unfavorable effects under control situations but protective effects seen after myocardial infarction or glucose depletion

    Overexpression of Transcripts Coding for Renin-b but Not for Renin-a Reduce Oxidative Stress and Increase Cardiomyoblast Survival under Starvation Conditions

    No full text
    A stimulated renin-angiotensin system is known to promote oxidative stress, apoptosis, necrosis and fibrosis. Renin transcripts (renin-b; renin-c) encoding a cytosolic renin isoform have been discovered that may in contrast to the commonly known secretory renin (renin-a) exert protective effects Here, we analyzed the effect of renin-a and renin-b overexpression in H9c2 cardiomyoblasts on apoptosis and necrosis as well as on potential mechanisms involved in cell death processes. To mimic ischemic conditions, cells were exposed to glucose starvation, anoxia or combined oxygen–glucose deprivation (OGD) for 24 h. Under OGD, control cells exhibited markedly increased necrotic and apoptotic cell death accompanied by enhanced ROS accumulation, loss of mitochondrial membrane potential and decreased ATP levels. The effects of OGD on necrosis were exaggerated in renin-a cells, but markedly diminished in renin-b cells. However, with respect to apoptosis, the effects of OGD were almost completely abolished in renin-b cells but interestingly also moderately diminished in renin-a cells. Under glucose depletion we found opposing responses between renin-a and renin-b cells; while the rate of necrosis and apoptosis was aggravated in renin-a cells, it was attenuated in renin-b cells. Based on our results, strategies targeting the regulation of cytosolic renin-b as well as the identification of pathways involved in the protective effects of renin-b may be helpful to improve the treatment of ischemia-relevant diseases

    An Alternative Promoter in Intron1 of the Renin Gene is Regulated by Glucose Starvation via Serum Response Factor

    No full text
    Background/Aims: Renin is known as a secretory glycoprotein that ultimately leads to angiotensin II generation. In this way renin exerts pro-inflammatory effects and promotes cardiac injury. Additional transcripts have been identified encoding for a cytosolic renin isoform that - in contrast to secretory renin - exhibits cardioprotective effects under ischemic conditions. The promoter of these transcripts is unknown. Methods: Using qRT-PCR and dual-luciferase reporter assay we examined the expression and promotor activity of cytosolic renin as well as the regulation by glucose starvation in H9c2 cardiomyoblasts. Results: We identified a promoter in intron1 of the rat renin gene with two glucose starvation-sensitive regions. One region contains a binding motif for serum response factor (SRF). Under glucose depletion expression of SRF increased prior to cytosolic renin. SRF knock down selectively decreased cytosolic renin expression and attenuated the increase of cytosolic renin expression under glucose depletion. Conclusions: Transcripts encoding for secretory and cytosolic renin are differentially expressed. The low basal expression of cytosolic renin as well as its induction under ischemia-related conditions represents an efficient system regulated in accordance with its previously identified unfavorable effects under control situations but protective effects seen after myocardial infarction or glucose depletion

    Overexpression of Renin-B Induces Warburg-like Effects That Are Associated with Increased AKT/mTOR Signaling

    No full text
    The classical secretory renin-a is known to be involved in angiotensin generation, thereby regulating not only blood pressure, but also promoting oxidative stress as well as apoptotic and necrotic cell death. In contrast, another cytosolic renin isoform named renin-b has been described, exerting protective effects under ischemia-related conditions in H9c2 cardiomyoblasts. Using microarray-based transcriptome analyses, we aimed to identify the signaling pathways involved in mediating cardioprotection in H9c2 cells overexpressing renin-b. By transcriptome profiling, we identified increased gene expression of several genes encoding glycolytic enzymes and glucose transporters, while the transcript levels of TCA-cycle enzymes were decreased. Complementing data from metabolic analyses revealed enhanced glucose consumption and lactate accumulation due to renin-b overexpression. Renin-b overexpression further stimulated AKT/mTOR signaling, where numerous genes involved in this pathway showed altered transcript levels. For AKT, we also detected enhanced phosphorylation levels by means of Western blotting, suggesting an activation of this kinase. Moreover, analysis of the ROS levels identified an increase in ROS accumulation in renin-b-overexpressing cells. Altogether, our data demonstrate that renin-b overexpression induces the metabolic remodeling of H9c2 cells similar to that seen under oxygen deprivation. This metabolic phenotype exerting so-called aerobic glycolysis is also known as the Warburg effect
    corecore