78 research outputs found

    A Semantic Characterization for ASP Base Revision

    Get PDF
    International audienceThe paper deals with base revision for Answer Set Programming (ASP). Base revision in classical logic is done by the removal of formulas. Exploiting the non-monotonicity of ASP allows one to propose other revision strategies, namely addition strategy or removal and/or addition strategy. These strategies allow one to define families of rule-based revision operators. The paper presents a semantic characterization of these families of revision operators in terms of answer sets. This semantic characterization allows for equivalently considering the evolution of syntactic logic programs and the evolution of their semantic content. It then studies the logical properties of the proposed operators and gives complexity results

    Excitons and stacking order in h-BN

    Full text link
    The strong excitonic emission at 5.75 eV of hexagonal boron nitride (h-BN) makes this material one of the most promising candidate for light emitting devices in the far ultraviolet (UV). However, single excitons occur only in perfect monocrystals that are extremely hard to synthesize, while regular h-BN samples present a complex emission spectrum with several additional peaks. The microscopic origin of these additional emissions has not yet been understood. In this work we address this problem using an experimental and theoretical approach that combines nanometric resolved cathodoluminescence, high resolution transmission electron microscopy and state of the art theoretical spectroscopy methods. We demonstrate that emission spectra are strongly inhomogeneus within individual flakes and that additional excitons occur at structural deformations, such as faceted plane folds, that lead to local changes of the h-BN stacking order

    Revisiting graphene oxide chemistry via spatially-resolved electron energy loss spectroscopy

    Get PDF
    The type and distribution of oxygen functional groups in graphene oxide and reduced graphene oxide remain still a subject of great debate. Local analytic techniques are required to access the chemistry of these materials at a nanometric scale. Electron energy loss spectroscopy in a scanning transmission electron microscope can provide the suitable resolution, but GO and RGO are extremely sensitive to electron irradiation. In this work we employ a dedicated experimental set-up to reduce electron illumina- tion below damage limit. GO oxygen maps obtained at a few nanometres scale show separated domains with diferent oxidation levels. The C/O ratio varies from about 4:1 to 1:1, the latter corresponding to a complete functionalization of the graphene flakes. In RGO the residual oxygen concentrates mostly in regions few tens nanometres wide. Specific energy-loss near-edge structures are observed for diferent oxidation levels. By combining these findings with first principles simulations we propose a model for the highly oxidized domains where graphene is fully functionalized by hydroxyl groups forming a 2D-sp3 carbon network analogous to that of graphane.AT, AZ and OS acknowledge support from the Agence Nationale de la Recherche (ANR), program of future investment TEMPOS-CHROMATEM (No. ANR-10-EQPX-50). The work has also received funding from the European Union in Seventh Framework Programme (No. FP7/2007 -2013) under Grant Agreement No. n312483 (ESTEEM2). AMB and WKM are grateful for Financial support from the Spanish Ministry MINECO and the European Regional development Fund (project ENE2013-48816-C5-5-R) and from the Regional Government of Aragon and the European Social Fund (DGA-ESF-T66 Grupo Consolidado). The authors are grateful to P. Launois, S. Rouziere and C.P. Ewels for useful discussion.Peer reviewe

    Computing Query Answering With Non-Monotonic Rules: A Case Study of Archaeology Qualitative Spatial Reasoning

    Get PDF
    International audienceThis paper deals with querying ontology-based knowledge bases equipped with non-monotonic rules through a case study within the framework of Cultural Heritage. It focuses on 3D underwater surveys on the Xlendi wreck which is represented by an OWL2 knowledge base with a large dataset. The paper aims at improving the interactions between the archaeologists and the knowledge base providing new queries that involve non-monotonic rules in order to perform qualitative spatial reasoning. To this end, the knowledge base initially represented in OWL2-QL is translated into an equivalent Answer Set Programming (ASP) program and is enriched with a set of non-monotonic ASP rules suitable to express default and exceptions. An ASP query answering approach is proposed and implemented. Furthermore due to the increased expressiveness of non-monotonic rules it provides spatial reasoning and spatial relations between artifacts query answering which is not possible with query answering languages such as SPARQL and SQWRL

    Bismuth iron garnet: ab initio study of electronic properties

    Full text link
    Bismuth iron garnet (BIG), i.e. Bi3Fe5O12, is a strong ferrimagnet that also possess outstanding magneto-optical properties such as the largest known Faraday rotation. These properties are related with the distribution of magnetic moments on octahedral and tetrahedral sites, the presence of spin gaps in the density of state and a strong spin-orbit coupling. In this work, first-principles ab initio calculations are performed to study the structural, electronic and magnetic properties of BIG using Density Functional Theory with Hubbard+U (DFT+U) correction including spin-orbit coupling and HSE06 hybrid functional. We found that the presence of spin gaps in the electronic structure results from the interplay between exchange and correlation effects and the crystal field strengths for tetrahedral and octahedral iron sublattices. The DFT+U treatment tends to close the spin-gaps for larger U due to over-localization effects, notably in the octahedral site. On the other hand, the hybrid functional confirms the occurrences of three spin gaps in the iron states of the conduction band as expected from optical measurements. A strong exchange splitting at the top of the valence bands associated with a lone-pair type mixture of O p and Bi s,p states is also obtained. Similar exchange splitting was not previously observed for other iron based garnets, such as for yttrium iron garnet. It follows that hole doping, as obtained by Ca substitution at Bi sites, results in a full spin polarized density at the Fermi energy. This work helps to shed more light on the theoretical comprehension of the properties of BIG and opens the route towards the use of advanced Many Body calculations to predict the magneto-optical coupling effects in BIG in a direct comparison with the experimental measurements
    corecore