26 research outputs found
Chromosomal localization of the 18S-28S and 5S rRNA genes and (TTAGGG)n sequences of butterfly lizards (Leiolepis belliana belliana and Leiolepis boehmei, Agamidae, Squamata)
Chromosomal mapping of the butterfly lizards Leiolepis belliana belliana and L. boehmei was done using the 18S-28S and 5S rRNA genes and telomeric (TTAGGG)n sequences. The karyotype of L. b. belliana was 2n = 36, whereas that of L. boehmei was 2n = 34. The 18S-28S rRNA genes were located at the secondary constriction of the long arm of chromosome 1, while the 5S rRNA genes were found in the pericentromeric region of chromosome 6 in both species. Hybridization signals for the (TTAGGG)n sequence were observed at the telomeric ends of all chromosomes, as well as interstitially at the same position as the 18S-28S rRNA genes in L. boehmei. This finding suggests that in L. boehmei telomere-to-telomere fusion probably occurred between chromosome 1 and a microchromosome where the 18S-28S rRNA genes were located or, alternatively, at the secondary constriction of chromosome 1. The absence of telomeric sequence signals in chromosome 1 of L. b. belliana suggested that its chromosomes may have only a few copies of the (TTAGGG)n sequence or that there may have been a gradual loss of the repeat sequences during chromosomal evolution
Full Length Research Paper Identification of species (meat and blood samples) using nested-PCR analysis of mitochondrial DNA
Crocodile meat product is an alternative protein source. Although, crocodile meat is more expensive, its taste is similar to that of chicken and fish. The authentication of commercial meat species is important for consumer’s confidence. In this study, sensitive and specific method multiplex nested-PCR was applied to identify commercial meat species. Dried blood was used as an alternative DNA source for detection. The detection sensitivity was enhanced by primers specifically designed to encompass the mitochondrial Cytochrome b and NADH dehydrogenase 5/6 genes. The specificity and sensitivity of multiplex PCR system were tested. Different lengths of specific nested-PCR products were detected to be 350, 570, 750 and 1000 bp for chicken, pig, cow, and crocodile, respectively. The system allowed detection with as little as 5 nanogram of DNA from either meat or blood sample. Detection sensitivity of individual species was improved, enabling the detection of DNA with as little as 1 picogram. Cross reaction was not detected among the tested species. It was shown that the multiplex-PCR assay enhanced the sensitivity of routine species identification and allowed the use of blood as an alternative DNA source for detection.Key words: Cytochrome b, NADH dehydrogenase, mitochondrial DNA, meat, blood, species identification, nested-PCR, crocodile
Snake W Sex Chromosome: The Shadow of Ancestral Amniote Super-Sex Chromosome
Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W sex chromosome is a unique karyological member of this heteromorphic pair, which has been extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes
Chromosome map of the Siamese cobra: did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?
Background
Unlike the chromosome constitution of most snakes (2n=36), the cobra karyotype shows a diploid chromosome number of 38 with a highly heterochromatic W chromosome and a large morphologically different chromosome 2. To investigate the process of sex chromosome differentiation and evolution between cobras, most snakes, and other amniotes, we constructed a chromosome map of the Siamese cobra (Naja kaouthia) with 43 bacterial artificial chromosomes (BACs) derived from the chicken and zebra finch libraries using the fluorescence in situ hybridization (FISH) technique, and compared it with those of the chicken, the zebra finch, and other amniotes.
Results
We produced a detailed chromosome map of the Siamese cobra genome, focusing on chromosome 2 and sex chromosomes. Synteny of the Siamese cobra chromosome 2 (NKA2) and NKAZ were highly conserved among snakes and other squamate reptiles, except for intrachromosomal rearrangements occurring in NKA2. Interestingly, twelve BACs that had partial homology with sex chromosomes of several amniotes were mapped on the heterochromatic NKAW as hybridization signals such as repeat sequences. Sequence analysis showed that most of these BACs contained high proportions of transposable elements. In addition, hybridization signals of telomeric repeat (TTAGGG)n and six microsatellite repeat motifs ((AAGG)8, (AGAT)8, (AAAC)8, (ACAG)8, (AATC)8, and (AAAAT)6) were observed on NKAW, and most of these were also found on other amniote sex chromosomes.
Conclusions
The frequent amplification of repeats might involve heterochromatinization and promote sex chromosome differentiation in the Siamese cobra W sex chromosome. Repeat sequences are also shared among amniote sex chromosomes, which supports the hypothesis of an ancestral super-sex chromosome with overlaps of partial syntenies. Alternatively, amplification of microsatellite repeat motifs could have occurred independently in each lineage, representing convergent sex chromosomal differentiation among amniote sex chromosomes
The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins
Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the \u27venom-ome\u27 and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 \u27venom-ome-specific toxins\u27 (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery
Do sex chromosomes of snakes, monitor lizards, and iguanian lizards result from multiple fission of an “ancestral amniote super-sex chromosome”?
Sex chromosomes in some amniotes share linkage homologies with distantly related taxa in regions orthologous to squamate reptile chromosome 2 (SR2) and the snake W sex chromosome. Thus, the SR2 and W chromosomes may formerly have been part of a larger ancestral amniote super-sex chromosome. Comparison of various sex chromosomal linkage homologies in Toxicofera with those in other amniotes offers an excellent model to assess key cytological differences, to understand the mechanisms of amniote sex chromosome evolution in each lineage and the existence of an ancestral amniote super-sex chromosome. Chromosome maps of four species of Toxicofera were constructed using bacterial artificial chromosomes (BACs) derived from chicken and zebra finch libraries containing amniote sex chromosomal linkages. Different macrochromosome linkage homologies were highly conserved among Toxicofera, and at least two BACs (CH261-125F1 and CH261-40D6) showed partial homology with sex chromosomes of amniotes associated with SR2, which supports the hypothesis of an ancestral super-sex chromosome with overlaps of partial linkage homologies. The present data also suggest a possible multiple fission mechanism of an ancestral super-sex chromosome, which resulted in further development of various sex chromosomal linkages of Toxicofera based on particular properties that favored the role of sex chromosomes