27 research outputs found

    Site and Strain-Specific Variation in Gut Microbiota Profiles and Metabolism in Experimental Mice

    Get PDF
    The gastrointestinal tract microbiota (GTM) of mammals is a complex microbial consortium, the composition and activities of which influences mucosal development, immunity, nutrition and drug metabolism. It remains unclear whether the composition of the dominant GTM is conserved within animals of the same strain and whether stable GTMs are selected for by host-specific factors or dictated by environmental variables.The GTM composition of six highly inbred, genetically distinct strains of mouse (C3H, C57, GFEC, CD1, CBA nu/nu and SCID) was profiled using eubacterial -specific PCR-DGGE and quantitative PCR of feces. Animals exhibited strain-specific fecal eubacterial profiles that were highly stable (c. >95% concordance over 26 months for C57). Analyses of mice that had been relocated before and after maturity indicated marked, reproducible changes in fecal consortia and that occurred only in young animals. Implantation of a female BDF1 mouse with genetically distinct (C57 and Agoutie) embryos produced highly similar GTM profiles (c. 95% concordance) between mother and offspring, regardless of offspring strain, which was also reflected in urinary metabolite profiles. Marked institution-specific GTM profiles were apparent in C3H mice raised in two different research institutions.Strain-specific data were suggestive of genetic determination of the composition and activities of intestinal symbiotic consortia. However, relocation studies and uterine implantation demonstrated the dominance of environmental influences on the GTM. This was manifested in large variations between isogenic adult mice reared in different research institutions

    Reactivity and regulation of motor responses in cocaine-exposed infants

    No full text
    Effects of prenatal exposure to cocaine on the reactivity and regulation of the motor system of 825 four-month-old infants enrolled in the Maternal Lifestyle Study were examined. Videotaped assessments of 338 cocaine-exposed (CE) infants and 487 non-exposed comparison infants were coded by examiners masked to exposure status. Exposure status was determined by meconium assay and maternal self-report of prenatal cocaine use. Infants were presented with a series of 17 visual, auditory and tactile stimuli for 30-second each. Intensity and latency of limb movement responses on a subset of items were analyzed to test the following hypotheses: CE infants are more active in general; CE infants exhibit increased movement levels for a larger proportion of time in response to stimulation; the motor systems of CE infants are more reactive to stimulation (e.g., shorter latencies to respond); and CE infants are poorer regulators of the motor system. Results CE infants were not more active in general and data do not indicate a more highly reactive motor system. However, CE infants exhibited increased movement levels for a larger proportion of time in response to stimulation. Additional analysis of movement exhibited during three tactile items found increased movement lability in CE infants and different patterns of responding, suggesting that the effects of prenatal cocaine exposure on the motor system may vary by context. Covariate effects for tobacco, alcohol, and marijuana are also reported
    corecore