48 research outputs found

    IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts.

    Get PDF
    International audienceBACKGROUND: Interferon-gamma receptor 1 (IFN-gammaR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-gammaR1 deficiency. METHODS AND FINDINGS: We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1-/- recipients. However, Ifngr1-/- mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-gammaR1-deficient humans, infected Ifngr1-/- mice displayed very high serum IFN-gamma levels before HSCT. The administration of a recombinant IFN-gamma-expressing AAV vector to Ifngr1-/- naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-gamma depletion in infected Ifngr1-/- mice in vivo allowed subsequent engraftment. CONCLUSIONS: High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages. These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-gammaR1-deficient patients through IFN-gamma depletion from the blood. They further raise the possibility that depleting IFN-gamma may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor

    Stepwise Development of MAIT Cells in Mouse and Human

    Get PDF
    Mucosal-associated invariant T (MAIT) cells display two evolutionarily conserved features: an invariant T cell receptor (TCR)α (iTCRα) chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC) molecule, MHC-related molecule 1 (MR1). MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanVα7.2 antibody and MAIT cell-specific iTCRα and TCRβ transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRα and TCRβ transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT) cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%–4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the periphery in a process dependent both upon B cells and the bacterial flora. Thus, their development follows a unique pattern at the crossroad of NKT and γδ T cells

    The Cell Adhesion Molecule “CAR” and Sialic Acid on Human Erythrocytes Influence Adenovirus In Vivo Biodistribution

    Get PDF
    Although it has been known for 50 years that adenoviruses (Ads) interact with erythrocytes ex vivo, the molecular and structural basis for this interaction, which has been serendipitously exploited for diagnostic tests, is unknown. In this study, we characterized the interaction between erythrocytes and unrelated Ad serotypes, human 5 (HAd5) and 37 (HAd37), and canine 2 (CAV-2). While these serotypes agglutinate human erythrocytes, they use different receptors, have different tropisms and/or infect different species. Using molecular, biochemical, structural and transgenic animal-based analyses, we found that the primary erythrocyte interaction domain for HAd37 is its sialic acid binding site, while CAV-2 binding depends on at least three factors: electrostatic interactions, sialic acid binding and, unexpectedly, binding to the coxsackievirus and adenovirus receptor (CAR) on human erythrocytes. We show that the presence of CAR on erythrocytes leads to prolonged in vivo blood half-life and significantly reduced liver infection when a CAR-tropic Ad is injected intravenously. This study provides i) a molecular and structural rationale for Ad–erythrocyte interactions, ii) a basis to improve vector-mediated gene transfer and iii) a mechanism that may explain the biodistribution and pathogenic inconsistencies found between human and animal models

    Inactivation of cytidine triphosphate synthase 1 prevents fatal auto-immunity in mice.

    No full text
    Compressed exel file for the Source data o

    Importance of T Cells, Gamma Interferon, and Tumor Necrosis Factor in Immune Control of the Rapid Grower Mycobacterium abscessus in C57BL/6 Mice▿

    No full text
    Mycobacterium abscessus is an emerging rapidly growing mycobacterium that causes tuberculous-like lesions in humans. We studied the immune control of this organism in C57BL/6 mice challenged intravenously with 107 CFU. Bacteria were eliminated from both the spleen and the liver within 90 days, and liver histology showed organized granulomatous lesions. A T- and B-cell requirement was investigated by challenging Rag2−/−, Cd3ɛ−/−, and μMT−/− mice. Rag2−/− and Cd3ɛ−/− mice were significantly impaired in the ability to clear M. abscessus from the liver and spleen, and μMT−/− mice were significantly impaired in the ability to clear M. abscessus from the liver, suggesting that infection control was primarily T cell dependent in the spleen and both T and B cell dependent in the liver. The liver granulomatous response was similar to that of wild-type controls in μMT−/− mice but completely absent in Cd3ɛ−/− and Rag2−/− mice. We studied the involvement of gamma interferon (IFN-γ) and tumor necrosis factor (TNF) by challenging C57BL/6 mice deficient in the IFN-γ receptor (Ifngr1−/−) and in TNF (Tnf−/−). Ifngr1−/− mice were significantly impaired in M. abscessus control both in the spleen and in the liver, and granulomas were profoundly altered. The effect was even more substantial in Tnf−/− mice; they failed to control M. abscessus infection in the liver and died within 20 to 25 days after infection with many hepatic inflammatory foci and major lesions of ischemic necrosis in the liver and kidney. These features were not observed with the closely related species M. chelonae. T-cell immunity, IFN-γ, and TNF are central factors for the control of M. abscessus in C57BL/6 mice, as they are for the control of pathogenic slowly growing mycobacteria

    Pyogenic bacterial infections in humans with IRAK-4 deficiency.

    No full text
    Members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily share an intracytoplasmic Toll–IL-1 receptor (TIR) domain, which mediates recruitment of the interleukin-1 receptor–associated kinase (IRAK) complex via TIR-containing adapter molecules. We describe three unrelated children with inherited IRAK-4 deficiency. Their blood and fibroblast cells did not activate nuclear factor κB and mitogen-activated protein kinase (MAPK) and failed to induce downstream cytokines in response to any of the known ligands of TIR-bearing receptors. The otherwise healthy children developed infections caused by pyogenic bacteria. These findings suggest that, in humans, the TIR-IRAK signaling pathway is crucial for protective immunity against specific bacteria but is redundant against most other microorganisms

    In Vitro and In Vivo Analysis of the Gram-Negative Bacteria-Derived Riboflavin Precursor Derivatives Activating Mouse MAIT Cells.

    No full text
    International audienceMucosal-associated invariant T (MAIT) cells recognize microbial compounds presented by the MHC-related 1 (MR1) protein. Although riboflavin precursor derivatives from Gram-positive bacteria have been characterized, some level of ligand heterogeneity has been suggested through the analysis of the MAIT cell TCR repertoire in humans and differential reactivity of human MAIT cell clones according to the bacteria. In this study, using Gram-negative bacteria mutated for the riboflavin biosynthetic pathway, we show a strict correlation between the ability to synthesize the 5-amino-ribityl-uracil riboflavin precursor and to activate polyclonal and quasi-monoclonal mouse MAIT cells. To our knowledge, we show for the first time that the semipurified bacterial fraction and the synthetic ligand activate murine MAIT cells in vitro and in vivo. We describe new MR1 ligands that do not activate MAIT cells but compete with bacterial and synthetic compounds activating MAIT cells, providing the capacity to modulate MAIT cell activation. Through competition experiments, we show that the most active synthetic MAIT cell ligand displays the same functional avidity for MR1 as does the microbial compound. Altogether, these results show that most, if not all, MAIT cell ligands found in Escherichia coli are related to the riboflavin biosynthetic pathway and display very limited heterogeneity
    corecore