706 research outputs found

    Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images

    Get PDF
    Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI). This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter

    COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration

    Get PDF
    published_or_final_versio

    Abnormal metabolic network activity in REM sleep behavior disorder

    Get PDF
    OBJECTIVE: To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. METHODS: For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 +/- 9.4 years old) and 10 healthy volunteers (62.7 +/- 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 +/- 4.8 years old) and 17 healthy volunteers (66.6 +/- 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 +/- 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. RESULTS: PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p \u3c 0.04; cohort 2: p \u3c 0.005). Of the 17 subjects with long-term follow-up, 8 were diagnosed with Parkinson disease or dementia with Lewy bodies; the others did not phenoconvert. For individual subjects with RBD, final phenoconversion status was predicted using a logistical regression model based on PDRP expression and subject age at the time of imaging (r(2) = 0.64, p \u3c 0.0001). CONCLUSIONS: Latent network abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome

    18 F-MK-6240 tau-PET in genetic frontotemporal dementia

    Get PDF
    Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient\u27s disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia. We enrolled subjects with genetic frontotemporal dementia, who constitute an ideal population for testing because their pathology is already known based on their mutation. Ten participants (three with symptomatic P301L and R406W MAPT mutations expected to show tau binding, three with presymptomatic MAPT mutations and four with non-tau mutations who acted as disease controls) underwent clinical characterization, tau-PET scanning with 18F-MK-6240, amyloid-PET imaging with 18F-NAV-4694 to rule out confounding Alzheimer\u27s pathology, and high-resolution structural MRI. Tau-PET scans of all three symptomatic MAPT carriers demonstrated at least mild 18F-MK-6240 binding in expected regions, with particularly strong binding in a subject with an R406W MAPT mutation (known to be associated with Alzheimer\u27s like neurofibrillary tangles). Two asymptomatic MAPT carriers estimated to be 5 years from disease onset both showed modest 18F-MK-6240 binding, while one ∼30 years from disease onset did not exhibit any binding. Additionally, four individuals with symptomatic frontotemporal dementia caused by a non-tau mutation were scanned (two C9orf72; one GRN; one VCP): 18F-MK-6240 scans were negative for three subjects, while one advanced C9orf72 case showed minimal regionally non-specific binding. All 10 amyloid-PET scans were negative. Furthermore, a general linear model contrasting genetic frontotemporal dementia subjects to a set of 83 age-matched controls showed significant binding only in the MAPT carriers in selected frontal, temporal and subcortical regions. In summary, our findings demonstrate mild but significant binding of MK-6240 in amyloid-negative P301L and R406W MAPT mutation subjects, with higher standardized uptake value ratio in the R406W mutation associated with the presence of NFTs, and little non-specific binding. These results highlight that a positive 18F-MK-6240 tau-PET does not necessarily imply a diagnosis of Alzheimer\u27s disease and point towards a potential use for 18F-MK-6240 as a biomarker in certain tauopathies beyond Alzheimer\u27s, although further patient recruitment and autopsy studies will be necessary to determine clinical applicability

    MYOD1 involvement in myopathy

    Get PDF
    [Excerpt] Introduction Myogenic Differentiation 1 (MYOD1) encodes a transcription factor that plays an important role in myogenic determination into mature skeletal muscle [1]. The first loss-of-function mutation of MYOD1 in humans was described in three siblings with perinatal lethal fetal akinesia [2].[...]We thank the individual and family. Funding was provided by The Fonds de recherche du Québec - Santé (FRQS) and Canadian Institutes of Health Research (CIHR) to P.M.C., Fundação para a Ciência e Tecnologia (FCT) with the fellowship SFRH/BD/84650/2010 to F.L. and Groupe Pasteur Mutualité Foundation (GPM Foundation) to M.M.info:eu-repo/semantics/publishedVersio

    Trajectories of university adjustment in the United Kingdom: Emotion management and emotional self-efficacy protect against initial poor adjustment

    Get PDF
    Little is known about individual differences in the pattern of university adjustment. This study explored longitudinal associations between emotional self-efficacy, emotion management, university adjustment, and academic achievement in a sample of first year undergraduates in the United Kingdom (N=331). Students completed measures of adjustment to university at three points during their first year at university. Latent Growth Mixture Modeling identified four trajectories of adjustment: (1) low, stable adjustment, (2) medium, stable adjustment, (3) high, stable adjustment, and (4) low, increasing adjustment. Membership of the low, stable adjustment group was predicted by low emotional self-efficacy and low emotion management scores, measured at entry into university. This group also had increased odds of poor academic achievement, even when grade at entry to university was controlled. Students who increased in adjustment had high levels of emotion management and emotional self-efficacy, which helped adaptation. These findings have implications for intervention

    Biomarker modeling of Alzheimer’s disease using PET-based Braak staging

    Get PDF
    Gold-standard diagnosis of Alzheimer’s disease (AD) relies on histopathological staging systems. Using the topographical information from [18F]MK6240 tau positron-emission tomography (PET), we applied the Braak tau staging system to 324 living individuals. We used PET-based Braak stage to model the trajectories of amyloid-β, phosphorylated tau (pTau) in cerebrospinal fluid (pTau181, pTau217, pTau231 and pTau235) and plasma (pTau181 and pTau231), neurodegeneration and cognitive symptoms. We identified nonlinear AD biomarker trajectories corresponding to the spatial extent of tau-PET, with modest biomarker changes detectable by Braak stage II and significant changes occurring at stages III–IV, followed by plateaus. Early Braak stages were associated with isolated memory impairment, whereas Braak stages V–VI were incompatible with normal cognition. In 159 individuals with follow-up tau-PET, progression beyond stage III took place uniquely in the presence of amyloid-β positivity. Our findings support PET-based Braak staging as a framework to model the natural history of AD and monitor AD severity in living humans

    Changes in regional cerebral perfusion over time in idiopathic REM sleep behavior disorder

    Get PDF
    Background Idiopathic rapid eye movement sleep behavior disorder is associated with increased risk of neurodegeneration, but the temporal evolution of regional perfusion, a marker of cerebral activity, has not been characterized. The objective of the current study was to study longitudinal regional perfusion in patients with idiopathic rapid eye movement sleep behavior disorder. Methods Thirty‐seven patients and 23 controls underwent high‐resolution single‐photon emission computed tomography. After 17 months on average, scans were repeated for idiopathic rapid eye movement sleep behavior disorder patients. We compared regional cerebral blood flow between groups and over time. Results At baseline, patients showed lower relative regional perfusion in the anterior frontal and lateral parietotemporal cortex compared with controls. However, over time, patients showed an increase in relative regional perfusion in the anterior frontal, lateral parietal, and occipitotemporal cortex, reverting toward normal control levels. Conclusions Patients with idiopathic rapid eye movement sleep behavior disorder showed significant areas of relative regional hypoperfusion, which disappeared over time to finally return to average levels, suggesting possible developing compensation in areas affected by neurodegeneration
    corecore