951 research outputs found
Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation
In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K2picene single crystal, while only parts of the crystal are doped and transformed into K2picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping. © 2018 The Author(s
Superconductivity and single crystal growth of Ni0:05TaS2
Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2
single crystal was successfully grown via the NaCl/KCl flux method. The
obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly
smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and
magnetization measurements reveal that the superconductivity transition
temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The
charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in
Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux
demonstrates that NaCl/KCl flux method will be a feasible method for single
crystal growth of the layered transition metal dichalcogenides.Comment: 13pages, 6 figures, Published in SS
Stable mode-locked pulses from mid-infrared semiconductor lasers
We report the unequivocal demonstration of mid-infrared mode-locked pulses
from a semiconductor laser. The train of short pulses was generated by actively
modulating the current and hence the optical gain in a small section of an
edge-emitting quantum cascade laser (QCL). Pulses with pulse duration at
full-width-at-half-maximum of about 3 ps and energy of 0.5 pJ were
characterized using a second-order interferometric autocorrelation technique
based on a nonlinear quantum well infrared photodetector. The mode-locking
dynamics in the QCLs was modelled and simulated based on Maxwell-Bloch
equations in an open two-level system. We anticipate our results to be a
significant step toward a compact, electrically-pumped source generating
ultrashort light pulses in the mid-infrared and terahertz spectral ranges.Comment: 26 pages, 4 figure
Streamer Wave Events Observed in Solar Cycle 23
In this paper we conduct a data survey searching for well-defined streamer
wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO)
on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle
23. As a result, 8 candidate events are found and presented here. We compare
different events and find that in most of them the driving CMEs ejecta are
characterized by a high speed and a wide angular span, and the CME-streamer
interactions occur generally along the flank of the streamer structure at an
altitude no higher than the bottom of the field of view of LASCO C2. In
addition, all front-side CMEs have accompanying flares. These common
observational features shed light on the excitation conditions of streamer wave
events.
We also conduct a further analysis on one specific streamer wave event on 5
June 2003. The heliocentric distances of 4 wave troughs/crests at various
exposure times are determined; they are then used to deduce the wave properties
like period, wavelength, and phase speeds. It is found that both the period and
wavelength increase gradually with the wave propagation along the streamer
plasma sheet, and the phase speed of the preceding wave is generally faster
than that of the trailing ones. The associated coronal seismological study
yields the radial profiles of the Alfv\'en speed and magnetic field strength in
the region surrounding the streamer plasma sheet. Both quantities show a
general declining trend with time. This is interpreted as an observational
manifestation of the recovering process of the CME-disturbed corona. It is also
found that the Alfv\'enic critical point is at about 10 R where the
flow speed, which equals the Alfv\'en speed, is 200 km s
Muon-Spin Rotation Spectra in the Mixed Phase of High-T_c Superconductors : Thermal Fluctuations and Disorder Effects
We study muon-spin rotation (muSR) spectra in the mixed phase of highly
anisotropic layered superconductors, specifically Bi_2+xSr_2-xCaCu_2O_8+delta
(BSCCO), by modeling the fluid and solid phases of pancake vortices using
liquid-state and density functional methods. The role of thermal fluctuations
in causing motional narrowing of muSR lineshapes is quantified in terms of a
first-principles theory of the flux-lattice melting transition. The effects of
random point pinning are investigated using a replica treatment of liquid state
correlations and a replicated density functional theory. Our results indicate
that motional narrowing in the pure system, although substantial, cannot
account for the remarkably small linewidths obtained experimentally at
relatively high fields and low temperatures. We find that satisfactory
agreement with the muSR data for BSCCO in this regime can be obtained through
the ansatz that this ``phase'' is characterized by frozen short-range
positional correlations reflecting the structure of the liquid just above the
melting transition. This proposal is consistent with recent suggestions of a
``pinned liquid'' or ``glassy'' state of pancake vortices in the presence of
pinning disorder. Our results for the high-temperature liquid phase indicate
that measurable linewidths may be obtained in this phase as a consequence of
density inhomogeneities induced by the pinning disorder. The results presented
here comprise a unified, first-principles theoretical treatment of muSR spectra
in highly anisotropic layered superconductors in terms of a controlled set of
approximations.Comment: 50 pages Latex file, including 10 postscript figure
Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method
The velocity auto-correlation spectra of simple liquids obtained by the NMR
method of modulated gradient spin echo show features in the low frequency range
up to a few kHz, which can be explained reasonably well by a long
time tail decay only for non-polar liquid toluene, while the spectra of polar
liquids, such as ethanol, water and glycerol, are more congruent with the model
of diffusion of particles temporarily trapped in potential wells created by
their neighbors. As the method provides the spectrum averaged over ensemble of
particle trajectories, the initial non-exponential decay of spin echoes is
attributed to a spatial heterogeneity of molecular motion in a bulk of liquid,
reflected in distribution of the echo decays for short trajectories. While at
longer time intervals, and thus with longer trajectories, heterogeneity is
averaged out, giving rise to a spectrum which is explained as a combination of
molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic
fluctuations.Comment: 8 pages, 6 figur
GenTAC registry report: Gender differences among individuals with genetically triggered thoracic aortic aneurysm and dissection
Previous data suggest women are at increased risk of death from aortic dissection. Therefore, we analyzed data from the GenTAC registry, the NIH‐sponsored program that collects information about individuals with genetically triggered thoracic aortic aneurysms and cardiovascular conditions. We performed cross‐sectional analyses in adults with Marfan syndrome (MFS), familial thoracic aortic aneurysm or dissection (FTAAD), bicuspid aortic valve (BAV) with thoracic aortic aneurysm or dissection, and subjects under 50 years of age with thoracic aortic aneurysm or dissection (TAAD <50 years). Women comprised 32% of 1,449 subjects and were 21% of subjects with BAV, 34% with FTAAD, 22% with TAAD <50 years, and 47% with MFS. Thoracic aortic dissections occurred with equal gender frequency yet women with BAV had more extensive dissections. Aortic size was smaller in women but was similar after controlling for BSA. Age at operation for aortic valve dysfunction, aneurysm or dissection did not differ by gender. Multivariate analysis (adjusting for age, BSA, hypertension, study site, diabetes, and subgroup diagnoses) showed that women had fewer total aortic surgeries (OR = 0.65, P < 0.01) and were less likely to receive angiotensin converting enzyme inhibitors (ACEi; OR = 0.68, P < 0.05). As in BAV, other genetically triggered aortic diseases such as FTAAD and TAAD <50 are more common in males. In women, decreased prevalence of aortic operations and less treatment with ACEi may be due to their smaller absolute aortic diameters. Longitudinal studies are needed to determine if women are at higher risk for adverse events. © 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97193/1/35836_ftp.pd
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Recommended from our members
Assessing the impact of changes in surface cover, human behaviour and climate on energy partitioning across Greater London
Climate-sensitive urban design is an increasingly important consideration for city planners and policy makers.
This study demonstrates the use of a biophysical model to assess the response of urban climate to various
changes, including population growth, reduced energy use, urban development and urban greening initiatives.
Model inputs are intentionally derived using only publicly available information and assumptions involved in
collating the data are discussed. Results are summarised in terms of the energy partitioning which captures
changes in meteorology, surface characteristics and human behaviour. The model has been recently evaluated
for the region, and those findings are drawn upon here to discuss the model’s capabilities and limitations. Model
simulations demonstrate how both intentional and inadvertent changes to the urban landscape can alter the
urban climate. For example, the impact of population growth depends on where, and how, people are housed,
and recent changes in garden composition have reduced evaporation. This study has been designed so that model
output could be combined with socio-economic data in future, enabling both risk and vulnerability to be
considered together
- …