12 research outputs found

    Plant Science's Next Top Models

    Get PDF
    Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models

    Shared and distinct functions of the pseudokinase CORYNE (CRN) in shoot and root stem cell maintenance of Arabidopsis

    Get PDF
    This study shows that the pseudokinase domain of the CLV2 co-receptor CRN is actively involved in transmitting the CLV3 peptide signal in the Arabidopsis shoot, but not in the proximal root meristem.Stem cell maintenance in plants depends on the activity of small secreted signaling peptides of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family, which, in the shoot, act through at least three kinds of receptor complexes, CLAVATA1 (CLV1) homomers, CLAVATA2 (CLV2) / CORYNE (CRN) heteromers, and CLV1/CLV2/CRN multimers. In the root, the CLV2/CRN receptor complexes function in the proximal meristem to transmit signals from the CLE peptide CLE40. While CLV1 consists of an extracellular receptor domain and an intracellular kinase domain, CLV2, a leucine-rich repeat (LRR) receptor-like protein, and CRN, a protein kinase, have to interact to form a receptor-kinase complex. The kinase domain of CRN has been reported to be catalytically inactive, and it is not yet known how the CLV2/CRN complex can relay the perceived signal into the cells, and whether the kinase domain is necessary for signal transduction at all. In this study we show that the kinase domain of CRN is actively involved in CLV3 signal transduction in the shoot apical meristem of Arabidopsis, but it is dispensable for CRN protein function in root meristem maintenance. Hence, we provide an example of a catalytically inactive pseudokinase that is involved in two homologous pathways, but functions in distinctively different ways in each of them

    System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells

    No full text
    In the crowded interior of a cell, diffusion alone is insufficient to master varying transport requirements for cell sustenance and growth. The dynamic actin cytoskeleton is an essential cellular component that provides transport and cytoplasmic streaming in plant cells, but little is known about its system-level organization. Here, we resolve key challenges in understanding system-level actin-based transport. We present an automated image-based, network-driven framework that accurately incorporates both actin cytoskeleton and organelle trafficking. We demonstrate that actin cytoskeleton network properties support efficient transport in both growing and elongated hypocotyl cells. We show that organelle transport can be predicted from the system-wide cellular organization of the actin cytoskeleton. Our framework can be readily applied to investigate cytoskeleton-based transport in other organisms

    TAF13 interacts with PRC2 members and is essential for Arabidopsis seed development

    Get PDF
    TBP-Associated Factors (TAFs) are components of complexes like TFIID, TFTC, SAGA/STAGA and SMAT that are important for the activation of transcription, either by establishing the basic transcription machinery or by facilitating histone acetylation. However, in Drosophila embryos several TAFs were shown to be associated with the Polycomb Repressive Complex 1 (PRC1), even though the role of this interaction remains unclear. Here we show that in Arabidopsis TAF13 interacts with MEDEA and SWINGER, both members of a plant variant of Polycomb Repressive Complex 2 (PRC2). PRC2 variants play important roles during the plant life cycle, including seed development. The taf13 mutation causes seed defects, showing embryo arrest at the 8-16 cell stage and over-proliferation of the endosperm in the chalazal region, which is typical for Arabidopsis PRC2 mutants. Our data suggest that TAF13 functions together with PRC2 in transcriptional regulation during seed development

    Brassinosteroids influence Arabidopsis hypocotyl graviresponses through changes in mannans and cellulose

    No full text
    The force of gravity is a constant environmental factor. Plant shoots respond to gravity through negative gravitropism and gravity resistance. These responses are essential for plants to direct the growth of aerial organs away from the soil surface after germination and to keep an upright posture above ground. We took advantage of the effect of brassinosteroids (BRs) on the two types of graviresponses in Arabidopsis thaliana hypocotyls to disentangle functions of cell wall polymers during etiolated shoot growth. The ability of etiolated Arabidopsis seedlings to grow upward was suppressed in the presence of 24-epibrassinolide (EBL) but enhanced in the presence of brassinazole (BRZ), an inhibitor of BR biosynthesis. These effects were accompanied by changes in cell wall mechanics and composition. Cell wall biochemical analyses, confocal microscopy of the cellulose-specific pontamine S4B dye and cellular growth analyses revealed that the EBL and BRZ treatments correlated with changes in cellulose fibre organization, cell expansion at the hypocotyl base and mannan content. Indeed, a longitudinal reorientation of cellulose fibres and growth inhibition at the base of hypocotyls supported their upright posture whereas the presence of mannans reduced gravitropic bending. The negative effect of mannans on gravitropism is a new function for this class of hemicelluloses. We also found that EBL interferes with upright growth of hypocotyls through their uneven thickening at the base
    corecore